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Abstract—Universal time is critical for coordinating function-
alities among co-located as well as geographically distributed IoT
devices. Current time alignment approaches for IoT devices rely
on radio-based communication that puts an extra burden on the
already resource-constrained devices. Other timing approaches
depend either on customized hardware frontends or on fixed
networking capabilities. Intermittent network connectivity fur-
ther deteriorates timing performance for these devices. These
constraints motivate us to create a new design that actively
embeds time information into the surroundings of IoT devices
that can harvest timing signals with off-the-shelf sensing capabil-
ities. Our design decouples clock performance from the network
uncertainties, introduce resource efficiency and extensibility, and
requires no modification in existing devices. A unique property
of our design is that it leverages the ubiquitous Electric Network
Frequency (ENF) fluctuations as global time reference for the
sensing devices, and takes on a variety of challenges at the in-
tersection of sensing and signal processing to provide a universal
sense of time without custom hardware frontends and network
dependability. We evaluate the extensibility of our design in
remote setups and show its robustness in real world settings.

Index Terms—Ambient Sensing; Time Synchronization; Edge
Computing

I. INTRODUCTION

Internet of things (IoT) is increasingly becoming an inte-
gral part of modern infrastructure. Wireless Sensor Networks
(WSNss) proliferate the urban infrastructure from smart homes,
parking systems [1] to city-wide sensor networks [2]. These
systems rely on a common notion of time to offer coordinated
services. Universal time across a sensor network is essential
for establishing causality among events detected by various
sensors. Misaligned clocks across the sensor network make it
difficult to draw complex relationships in data collected across
devices [3]. As such, the devices, when not aligned, are more
vulnerable to attacks by malicious agents [4]. Hence, a resilient
and fault-tolerant time service is critical for WSNs and IoT
applications.

While there exists many well-established techniques to
achieve time synchronization across sensor networks, our
work is motivated by several reasons. First, the existing
approaches (NTP [5], PTP [6], FTSP [7]) rely on high
packet exchange rate for good synchronization performance,
however this high bandwidth requirement is an additional
burden on the resource-constrained IoT devices. Second, most
of these protocols require continuous network availability, but
in reality, edge networks are intermittent and edge device
clocks exhibit large drifts during network outages. These clock
drifts are further exacerbated by packet delay attacks [4].
Third, the design of existing timing services assumes uniform
networking stacks across the IoT devices. For example, while

NTP works with all the devices with TCP/IP stack, BLE-
enabled devices cannot directly access NTP services. Thus
time synchronization quality may vary across sensor network
deployments with heterogeneous networking resources.
Alternatively, sensor networks can be synchronized using
external reference signals (Syntonistor [8], WiFi beacons [9],
periodic FM broadcasts [10]). While these approaches ubiqui-
tously sense the grid and radio signals, they rely on customized
hardware frontends for signal sensing. These non-trivial exten-
sions are not always feasible during network deployments.
Our work aims for a ubiquitous timing service for off-the-
shelf sensing edge devices without any hardware modification
and resource overhead. We take inspiration from ambient
sensing that extracts timing information from environmental
phenomenons. Our work employs passive sensing rather than
active communication on edge devices, and significantly re-
duce the power and bandwidth requirements for synchroniza-
tion. A key component of our approach is a timing signal
with the following properties: (i) ubiquitous i.e. omnipresent
over a wide area, (ii) takes a unique form over any given
period to encode time information, and (iii) easy to capture.
For example, Electric Network Frequency (ENF) signals are
ubiquitous, and as demonstrated by Li, Tan, and Yau [11],
ENF fluctuations are unique and are easily measured from a
power socket using low-cost off-the-shelf components [12].
Leveraging ENF signals for timing is not new; a variety
of approaches use hardware customization to sense ENF
for universal timing. In contrast, our goal is to extend the
ubiquity and uniqueness of ENF to commercial off-the-shelf
(COTS) sensing devices, which otherwise have lower timing
performance with existing universal timing solutions or lower
extensibility with rigid designs. Different from ENF based
time synchronization [11], we provide a new mechanism to
actively embed ENF time information on sensing signals.
We design an edge time server that modulates and broad-
casts ENF timing signals over a variety of common sensing
modalities such as audio and light. Edge sensing devices
harvest our ENF embedded signals for aligning their clocks
globally. Our approach is the first one to explore the potential
of commodity devices to broadcast reference timing signals in
the environment and leverage them for time synchronization.
A fundamental property of this design is to shift the burden
of time synchronization away from resource-constrained edge
devices to an edge server; that is responsible for both the
broadcast and extraction of the time information from sensing
data. Though a variety of sensors can be used, for brevity, we
have chosen two of the most common sensing modalities i.e.
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Fig. 1: System Overview

optical and audio sensors on IoT devices.

We demonstrate our design idea in Figure 1 with a smart
space equipped with a variety of sensors. Our edge server
records grid ENF from a power socket, then broadcasts the
recorded ENF signal using light, and audio modalities'. The
ENF artifacts in these signals allow different sensing devices
(optical sensors and microphones in the figure) to observe
the same pattern at any given time. By comparing these ENF
artifacts in sensor data against the reference ENF at the server,
we decode timestamps to provide a common notion of time to
all IoT devices as shown in signal representations of Figure 1.

While ENF signal is widespread, modulating this signal
for sensing devices poses several challenges. First, we should
establish physical layer communication using visible light
(VLC), sound, and other properties of sensing devices with
low sampling rates using COTS components. Recent works
have made significant progress towards establishing a VLC
channel between devices [13]-[15]. However, these systems
either use customized front-ends [14], [15] or employ a high
sampling rate at the receiver. On the other hand, the use of
sound for digital communication is rare. Google Tone [16],
one of its kind product, uses sound to share URIs between
personal computers. While the implementation details are not
available, it targets the devices that can generate pure tones and
record audio at high sampling rates. In addition, COTS devices
typically have low sampling rates as compared to dedicated
front-ends in customized VLC [14], [15] and microphones
receivers for recording high-quality sound.

In contrast, our design is agnostic to customized frontends
and instead use COTS hardware properties along with software
optimizations to encode and decode ENF signals for timing.
Our server design leverages a pulse width modulated (PWM)
signal to achieve frequency modulation for ENF signal encod-
ing. Most micro-controllers can produce PWM in hardware
while dedicating computational resources to other tasks.

One of our other challenges is the lack of symbol frame
synchronization between the sender (server) and receiver (IoT
device). Both devices use COTS microcontrollers with a high
mutual clock drift. We leverage preambles to synchronize
the sender and receiver symbol frames periodically. Our last
challenge is detection of invalid ENF data at the receiver
to provide error-free ENF signal demodulation for low sam-
pling rate sensor data. These errors result from unsuitable

IServer has the capability to use other modalities too such as vibration

environmental conditions. We leverage an insight of periodic
preambles transmissions to verify the validity of ENF data
captured by IoT sensors.

Contributions of the paper. Our work provides universal
time to ubiquitous IoT devices using ambient sensing while be-
ing resilient to network variations and agnostic to customized
hardware deployments. Our main contributions are as follows:

o Our biggest challenge is in modulating ENF signals on a
variety of sensing channels. We design a frequency-based
data modulation technique that caters to low sampling
rates on [oT devices using COTS equipment. Our results
suggest that IoT devices equipped with optical and audio
sensors (extensible to other sensors in future) can obtain
timestamps with a comparable accuracy to NTP.

e Our algorithms run in real-time on the edge server and re-
quire no changes to off-the-shelf IoT devices. Our system
requires no hardware extensions to capture the modulated
ENF signal. During network outages, the devices stay in
synchronization as long as the ENF signal is broadcasted
via sensing channels.

o We conduct evaluation of the proposed system using a
real-world and remote sensor network deployment. Our
results suggest — depending upon the kind of sensing
modality — that universal timestamps provided to IoT
devices are accurate to 10s of milliseconds, which is
significantly better than NTP performance on similar
network deployments.

II. LITERATURE SURVEY

Traditional time synchronization approaches rely on com-
munication based protocols. NTP [5] is the most commonly
used and universal protocol, but requires frequent packets
exchange and reliable network access; which is often too
expensive or not available for resource-constrained IoT de-
vices. Similarly, FTSP [7] is a common protocol in aligning
wireless sensor networks but it is restricted to devices with
same hardware and software resources. GPS and PTP [6] are
used to provide high timing accuracy for computing systems
but they require specialized hardware at the edge devices.
In contrast, our system provides a general framework for
providing common time to resource-constrained devices with
heterogeneous hardware and software platforms and works
even in absence of reliable network leveraging electric network
frequency artifacts.
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Alternatively, ambient events can be used to establish com-
mon notion of time. For example, Trinity calibrates local
device clocks using energy harvester’s natural frequency [17].
Gupchup et al. [18] relies on annual solar cycles to extract
natural timestamps from optical sensor data and Lukac et
al. [19] develops models for seismic wave propagation, which
enable them to synchronize time across seismic sensor net-
work. These approaches, however, have limited applications
and only provides coarse grained time information (in the
order of several minutes). Our system design proposes a
generalized solution that works with heterogeneous platforms
with off-the-shelf sensing capabilities.

Electro-Magnetic Radiation (EMR) from electric power-
lines have been explored extensively for time services in IoT
systems. Syntonistor [12] relies on EMR signal periodicity to
calibrate clocks, whereas, Li et al. leverages Electric Network
Frequency (ENF) fluctuations, measured directly from electric
sockets, as timestamp opportunities [11], [20]. While our
system also exploits ENF fluctuations for clock calibration,
we rely on prevalent sensing capabilities on commodity IoT
devices to provide timestamps rather than using customized
front ends.

A variety of sensor-specific solutions have been proposed
for clock calibration and verification purposes. For instance,
ENF traces extracted from audio and video streams of multi-
media files have been leveraged for clock synchronization [21].
Fluorescent fluctuations can be used to synchronize wireless
sensor networks observing the fluorescent light sources con-
nected to a single grid [22]. These works depend entirely on
sensor specific sources i.e. fluorescent lights, which may not be
present in most environments. They also rely on sophisticated
external circuitry for sensing ENF artifacts. Such external
peripherals have also been explored for time synchronization
via radio broadcasts [10], [23]. In our work, however, we
provide a ubiquitous solution for prevalent sensing modalities
that leverage global ENF artifacts on commodity platforms,
and at the same time, improve the accuracy of timestamp
extraction to sub-seconds.

III. BACKGROUND

This section explains the key idea behind our system design,
i.e. the use of ENF fluctuations as timestamps.

A. Electric Network Frequency (ENF) as Timestamps

The frequency of electric grids — an integral part of the
modern infrastructure — is controlled centrally, and it is a
function of power generation and load on the grid. Typically,
the load on the electric network varies continuously, and the
power generation is adjusted in response to the variation in
grid load. The unpredictable changes in power input and
output of an electric network give rise to unique fluctuations
in ENF. These ENF fluctuations have traditionally been used
to encode/decode time information [11]. Any device that can
capture ENF fluctuations can obtain Universal Coordinated
Time (UTC) from a server that stores historical (reference)
ENF data along with UTC timestamps. Figure 2 shows that
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Fig. 2: Fluctuations in the ENF data recorded from two
separate power sockets supplied by the same electric network.
For better visualization the two signals are offset (artificially)
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Fig. 3: Time error among UTC timestamps of the ENF signal
recorded from two power different sockets supplied by the
same grid.

the fluctuations in ENF values recorded from two separate
power sockets supplied by the same electric grid have identical
changes over an hour. When sampled and correlated across
distributed sources, yield a matching index.

Decoded Timestamps. An ENF sequence consists of a series
x of n ENF measurements in time interval (¢7,t2). Let y be a
series of m reference ENF measurements at a server measured
during time interval (tg , tf ). We can decode the timestamp x
if 7 > t7 and tJ < tE. We also record a UTC timestamp
with each reference ENF measurement. To decode the ENF
sequence x, we compute its root mean square error (RMSE)
with y using a sliding window of length n. We determine
the start index k£ of the sliding window for which the two
sequences have minimum RMSE as

k = arg min RMSE(z,y[k : k+ n]) (1)
0<k<m—n

The UTC timestamp t;, corresponding to index k is referred to
as decoded timestamp for the ENF sequence x. While the error
between decoded timestamp and the actual UTC timestamp,
obtained for n ENF samples at the IoT device, is the decoding
error or simply the time error. We will use this time error as

a measure to evaluate the effectiveness of our design.
Electric grids often supply geographically wide areas. In
theory, the ENF signal recorded from any two power sockets
supplied by the same grid should yield zero time error when
compared against each other. Figure 3a shows time error
variation with the length of ENF series used for decoding
timestamp. We observe that a series length between 420-600
seconds is optimal for decoding the ENF data. Figure 3b shows
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Fig. 4: Overview of System Design

the time error when using different numbers of ENF measure-
ments per second (ENF sampling rate) for the decoding. It
is clear a time error of few milliseconds is obtained. It is
based on the ENF data rate and length of the ENF series
used for decoding and results from the sampling noise at the
two devices capturing the ENF signal. As a result the devices
using ENF signal as reference clocks are indeed very tightly
synchronized.
IV. SYSTEM DESIGN

We have designed our Universal Timestamping approach
to align clocks on off-the-shelf IoT devices using prevalent
sensing capabilities. Unlike traditional approaches that either
rely on specific communication channels, customized hard-
ware front ends or tied to a particular sensing technology,
our system is agnostic to these requirements, rather align
clocks globally with high accuracy on intermittently-connected
devices with a variety of sensing capabilities.

In our system, we maintain a controller that acts as an
edge time server. It maintains a reference ENF signal with
encoded time information. One such server is enough to
globally synchronize a variety of commodity IoT devices in a
smart space. Figure 4 shows that our system design consists of
a variety of IoT devices and an edge server. The edge server
samples Grid ENF, modulates it and broadcasts time-encoded
ENF signals through a variety of sensing sources (audio, light
sources etc.), and the commodity IoT devices sample and
timestamp these signals via corresponding sensing capabilities.
This network-agnostic sensing-based communication puts no
extra overhead on IoT devices, and bypasses uncertainties
that stem from unreliable networks. After collecting enough
timestamped sensor data, the IoT devcies send the data back
to edge server for demodulation. This communication is not
time-sensitive and does not impact clock accuracy. The server
correlates demodulated ENF signals across multiple devices
with reference ENF at the server to extract global universal
coordinated (UTC) time.

Note that compute-intensive tasks of modulation and de-
modulation only occur at the server, thus relieving IoT devices
with compute and communication overhead. In short, our
design allows devices with a variety of networking and sensing
capabilities to align time, in contrast to other approaches such
as NTP [5] that assumes the availability of IP networking
stack, PTP [6] that requires IEEE1588 compliant hardware,
and Natural timestamping [11] with customized frontends
tied to one sensing signal (powerline radiations). Below, we
provide details of each design block in our system design i.e.
modulation of ENF signals for broadcasting, how different

AC/AC ADAPTOR

Fig. 5: Reference ENF Generation at Edge Server

sensors at IoT devices capture the broadcasted signal in the
presence of noise and environmental variations, and how the
server demodulates the signal to extract UTC time.

A. Edge Server

Edge server performs two critical tasks. First, it captures
and then broadcasts time information encoded in ENF fluctu-
ations. It is equipped with a reference ENF producing device
originally designed by Sreejaya et al [20]. As shown in Fig-
ure 5, the server measures ENF directly from the wall power
socket producing accurate ENF measurements. The alternating
voltage from the electric network is converted into an analog
PWM signal which replicates the input voltage’s frequency.
Then analog PWM is fed to an MCU, which measures the
PWM period (period’s inverse represents ENF frequency)
using interrupts. MCU communicates these measurements to
another processing unit which obtains UTC timestamps for
each data point. We refer to these measurements at the edge
server as our reference ENF measurements. The MCU also
performs frequency-based modulation of the encoded data for
broadcast into the environment using COTS components i.e.
LEDs for lights signals and speaker for audio signals. We also
refer to this MCU as a controller device in this paper. Figure 5
shows our hardware implementation of the edge server.

The second function of the edge server is to process the
sensor data from IoT devices. It receives the sensor data
offloaded by IoT devices and performs demodulation to extract
ENF. The edge server then correlates the recovered ENF signal
with the reference ENF measurements and determines the
UTC timestamp against the encoded timestamp.

B. Time Embedding in Sensing Signals

The key component of our system design is broadcasting
ENF data as encoded sensing input. We encode ENF data using
frequency based modulation. Below we describe our approach
behind the system design for broadcasting ENF data.

Unified Modulation Approach. While we modulate data for
different sensing modalities, we aim to have a unified design
at the controller. Such a design generates identical modulation
of the ENF data for all sensing modalities. The only difference
is in the hardware used for ENF data broadcast i.e. an LED for
the optical and a speaker for the audio channel. It simplifies the
controller design, saving computational resources. Typically,

337


Adeel Nasrullah


2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

pulse width modulation is used for the optical communication
channels between the devices [14], [15]. But these techniques
use customized front ends to decode the data. Low sampling
rates on commercial IoT sensors are not feasible for PWM-
based modulation techniques because their will only be a
few samples to capture a single symbol, making it prone
to noise. Amplitude-based modulation approaches are also
not a good fit. Detecting amplitude changes in the signal is
difficult without specialized tools, as it also varies with the
distance. However, frequency-based modulation approaches
are more robust. We can detect frequency changes in the signal
much more reliably than the amplitude changes. Thus, many
applications rely on frequency analysis of the signal to detect
patterns [16], [24].

1) Modulation: Our system adopts a binary frequency mod-
ulation approach to encode ENF data for broadcast. In essence,
this approach uses two frequencies fp and f; to encode 0
and 1 respectively. To modulate an ENF measurement using
this method: i) convert each ENF measurement into a binary
sequence of length a, ii) encode each bit of this binary
sequence with a frequency (fo and f;) signal of duration 7" and
iii) transmit all frequency signals in a time slots with duration
T'. Our modulation design choices are explained below:

Modulation Signal. As shown in figure 5, an MCU attached
to the Edge server is responsible for modulating the ENF
measurements. It requires the MCU to produce sinusoidal
signals of frequencies fy and f;. However, most MCUs are
not equipped with the hardware to produce sinusoidal signals,
and do it in software. This consumes precious computational
resources, and software-based generation may be interrupted
frequently by context switching with other tasks. Alternatively,
most MCUs are equipped with hardware to produce a pulse
width modulated (PWM) signal that saves precious computa-
tional resources for the MCU.

Using PWM as a modulation signal restricts our choice of
fo and f; for encoding binary data. PWM does not consist
of a pure frequency, rather a combination of frequencies:
z(t) = Y07 cpexp(jnwt). This represents the Fourier
expansion of a periodic signal x(t) where x(t) is a PWM
with a 50/% duty cycle, which is the case in our design.
w = 27 f represents base PWM frequency where f is the
frequency in Hz. We can see that PWM has infinite frequency
components (harmonics), where each component has a fre-
quency that is an integer n = 1,2, 3, ...,00 multiple of base
frequency f. ¢, is the complex co-efficient that determines the
amplitude and phase of a given harmonic with frequency n.
In case of a pure frequency (a sinusoidal signal), ¢,, = 0 for
n=1,23,...00, whereas, a PWM signal with 50% duty cycle,

_ Asin(mn/2) . _

Cph = 4 —— 75— 1.€. a non-zero value for n = 1, 3,5, ..., c0.
Therefore, we use PWM to modulate our data as long as the
two frequencies (fy and f7) are not odd harmonics of each
other and hence do not interfere. At the receiver, we filter the
data to retain the base components of the broadcast frequencies
and ignore the harmonics.

Modulation Frequency. Our modulation frequencies are
limited by the sampling rate available at our target sensing IoT

devices. Typical sensing devices have no customized front-
ends and have relatively low sampling rates. These sensing
devices have a modest sampling rate i.e. 1kHz as compared to
10kHz used in previous works [13]. According to the Nyquist
principle, with 1 kHz sampling rate, the highest frequency we
can capture is S00Hz. This determines the upper limit for the
frequencies we can choose for modulation.

We follow these guidelines when selecting the modulation
frequencies: 1) the selected frequencies should not be the
odd integer multiples of each other (explained before through
PWM signal properties), 2) there should be no interference
from external sources, and 3) the selected frequencies should
not disrupt the surrounding environment. The biggest source
of external interference for optical and audio sensors are
electromagnetic radiations (EMR) from power-lines at 60
Hz [25]. Another source of interference for optical sensors
are fluorescent lights at 120 Hz. We avoid these frequencies
as well as their harmonics to avoid interference. A visible
light source operating at frequencies lower than 60 Hz may
also cause flickering for some people.

Keeping in mind these observations, we chose 210 and
270 Hz as our modulation frequencies. These frequencies are
not integer multiples of each other (guideline 1). Neither of
these frequencies overlaps with 60 Hz and its harmonics hence
avoiding external interference (guideline 2). And they are high
enough so that LEDs will not flicker (guideline 3). One can
select any other frequency pair that follows this guideline. An
additional advantage of our selected frequencies is that they lie
on the edge of frequencies produced by adult human speech
(85-255 Hz) [26]. Thus, we largely avoid interference from
conversations between people as they are low pitch enough to
blend in the background.

2) Demodulation: The modulated ENF measurements em-
bedded in the environment are captured by the IoT devices
via sensing. This data is offloaded to the edge server and
demodulated to recover ENF measurements. A single ENF
measurement is received as a frequency encoded signals of
duration 7. ENF Data is demodulated via these steps: (i) for
each duration T' of the received signal, determine magnitude
of the two modulation frequencies (fy and f1) (ii) compare the
magnitudes of fy, f1 and (iii) output a zero bit if magnitude
of fy is greater than f; and vice versa. (iv) convert a bit long
binary sequence into an integer (which represents demodulated
ENF data).

Traditionally, frequency-based modulation is decoded via
Fourier transform analysis of an encoded bit duration 7.
However, the frequency granularity of the Fourier transform
is limited at low sensor sampling rates. For example, consider
a baud rate of B = 10 at a sampling frequency of fs = 1000
Hz, we have N = 100 data points to detect each symbol.
A Fast Fourier transform, in this case, will have a resolution
of fﬁ = 10 Hz only. This level of granularity is insufficient
if the selected modulation frequencies are not multiples of
10. It limits the choice of modulation frequencies for the
system designers. Instead, we use an alternate approach to
estimate the two frequency components in the sensor data.
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data increases with increase in Baud Rate, we select a baud
rate of 10 bits/second where we get negligible error.

We compute the normalized correlation of the sensor data with
sinusoidal signals of the frequencies (fy = 210 and f; = 270)
used for modulation. It gives the magnitude of each frequency
component in the data. Granularity is no longer an issue. We
can chose any combination of modulation frequencies as long
as they meet the guidelines outlined in section IV-B1.

3) Transmission Optimization: In this section, we analyze
different parameters to achieve optimal ENF data transmission
between the server and the IoT devices.

Baud Rate. This is the number of symbols transmitted
per second B. It is eight times higher than the ENF data
transmission rate D = %. We refer to the errors in the ENF
data received at the [oT sensors as transmission errors. These
are the number of incorrect bytes (one byte represents one ENF
measurement) received at the IoT per 100 bytes (measured as
percentage).

Ideally, we want to transmit all ENF measurements (an ENF
sequence) obtained at the Edge server (60 measurements per
second) with zero errors (D = 60H z). In such a scenario, the
IoT device will receive an ENF sequence identical to the one
stored at the Edge server. Let = be the ENF sequence received
at the IoT device and y be the reference ENF sequence stored
at the Edge server. According to the equation (1), we will
obtain the index k£ with RMSE = 0. It is the minimum possible
RMSE value and the corresponding timestamp ¢ will give us
the minimum time error that can be obtained by decoding the
ENF sequence x. This result is based on two assumptions:
1) the ENF sequence x is unique and matches y at one and
only one location (section III-A) 2) The ENF sequence z is
identical to the ENF sequence y stored at Edge server. Any
ENF sequence which retains these two properties should yield
minimum time errors, irrespective of the ENF data rate (D).
Thus, we choose the baud rate B for which ENF transmission
rate D = % captures sufficient ENF fluctuations to be unique
in a given period and have zero transmission error.

Figure 6 shows the transmission errors for different baud
rates. We observe for B = 10bps, the transmission error is
less than 1 percent. We assume that it is negligible error.
Next, we proceed to determine if the ENF sequence received
at D = 1.25 Hz (B = 10 bits per second) uniquely matches

the reference ENF. If we see a time error less than %, an

) '

oLe”
100 150 200 250 300 350 400
Data Packet Size (Bytes)

Fig. 7: Error rate with respect to the packet size

exact match has occured between the ENF sequence received
at the IoT device ‘and the one stored at the server. Otherwise,
an error will be & where j is the offset of the ENF sequence
from exact matching index. Figure 6a, shows the time error
at different ENF data rates D. From the figure it is clear that
the time error for D = 1.25 Hz (B = 10 bits per second) is
only few milliseconds, which is less than %. Not only that
ENF sequence at D = 1.25 can yield an exact match, we can
also assume 1% transmission error at this transmission rate
negligible. As D = 1.25 Hz is the highest ENF transmission
rate D for which we have negligible error, we choose a baud
rate of B = 10bps for our further experiments.

With negligible transmission error, timestamps obtained
against received ENF sequence will give us the minimum
time error. However, as this error is still non-zero, as the
propagation of modulated ENF data over the physical medium
(visible light and sound) takes time. This is often referred to
as propagation delay. And with one way signal transmission,
we cannot eliminate this error.

Bit Frame Synchronization. At B = 10bps, the server
transmits one bit every 7' = 100ms, and we refer to this
duration as bit frame. To demodulate the data, we need to
accurately determine the start of bit frame. An offset of a
few samples may alter the relative magnitude of fy and f;
obtained from the bit frame. To avoid this problem, we align
the bit frame between the sender and receiver using a preamble
sequence before the transmission of ENF data. The preamble
is a one-byte long sequence of bits with a fixed pattern
00000010. At the receiver, we scan for this preamble using
auto-correlation. Once detected, the boundary between one and
zero is considered as the starting point of the next bit frame.

Data Error Rate. As discussed above, we use pream-
ble to align sender and receiver bit frames, however, their
clocks exhibit relative drift and misalign over time after
initial synchronization via preamble. We address this issue by
periodic preamble transmission after a fixed number of ENF
transmissions, thus allowing repeated calibration of bit frames
during demodulation. We refer to one preamble and the ENF
data transmitted in between two preambles as one data packet.

The periodic preamble reduces the amount of useful trans-
mitted data. Figure 7 shows ENF data errors for different
packet sizes. While there is a single error in a packet of 100
bytes (100 ENF measurements), error grows rapidly for larger
packets. We can reduce the error by choosing a smaller packet
size that will effectively reduce the useful bandwidth for ENF
data broadcast. We end up choosing the packet size to be 100
bytes, where one byte is the preamble.
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Fig. 8: Time error variation with ENF sequence length

C. Optimizing ENF Decoding

Our design broadcasts time information with encoded ENF
fluctuations. With a baud rate of B = 10bps, we receive
1.25 ENF measurements per second. Before, we proceed with
the evaluation of our design, we investigate the length of
ENF sequence, that will give us the minimum decoding error.
Figure 8a shows the time error with respect to the ENF
sequence length. We can see that decoding error is in the
same order of magnitude irrespective of ENF sequence length.
It is the result of ENF data transmission with less than 1%
transmission error. Thus, IoT devices receive an ENF sequence
that is identical to the reference ENF at the edge server. This
means that even 2 minutes of ENF measurements are sufficient
to decode the timestamp.

However, in the presence of transmission errors (approx-
imately 15%) during ENF data transmission (B = 40 bits
per second) the relationship of time error with ENF sequence
length is given by figure 8b. It shows that we need larger trace
lengths in presence of errors (4 minutes) but too large a trace
length will increase time errors. This also validates our design
choice in section IV-B3 to use lower baud rate (B = 10 bps)
with negligible transmission ( 1%) errors rather than higher
baud rate (B = 40 bps) with higher transmission error rate
( 15%).

V. IMPLEMENTATION & EVALUATION

We implement both local and remote sensing setup in a real
world smart space, and evaluate the timing performance of our
design as well as the system robustness.

Measurement Setup. For our experiments, we setup a
Raspberry Pi based edge server as shown in Figure 5. This
server receives high resolution ENF measurements captured by
Particle Photon MCU, which has STM32F205RGY6 processor
based on ARM Cortex M3. It then broadcast the received
values over sensing channels using off-the-shelf components
(an LED and speaker for optical and audio channels respec-
tively). Our IoT device is Sparkfun ESP32 Things based
micro-controller with Tensillica LX6 dual core processor, and
run FreeRTOS based software stack. The MCUs used in this
setup represent typical resource constrained IoT devices. To
capture modulated ENF artifacts broadcast in the environment
by the server, our IoT devices have sensors (photo-resistor
and a microphone) interfaced with analog-to-digital converter
pins of ESP32 devices. The sampling rate is set to 1kHz.
The data from our IoT device is communicated to another
Raspberry Pi device (different from our Edge server) over
USB where we obtain UTC timestamps for each data sample.
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Fig. 9: Time error over sensing channel

The second Raspberry Pi device is part of a temporary setup
and the timestamps obtained are only for the purpose of error
calculation with the decoded timestamps.

A. Sensing Channel Performance

We first determine the error in UTC timestamps obtained
over different sensing channels, then compare the performance
with other baseline implementations.

1) Time Error over the Sensing Channel: To analyze the
performance of our system, we collect data for both sensing
modalities. The ENF data is broadcasted at a baud rate of
10 bits/sec. The preambles are transmitted every 100 bytes
of data. As expected, we have less than 1% error in the
ENF data received over the sensing modalities. It means we
have received an ENF sequence at the sensing devices that
is identical to the one recorded at the edge server. We use
equation (1) to obtain timestamp against the received ENF
sequence. Figure 9 shows the distribution of time error for the
optical and audio sensing modalities. The mean error is 7 and
32 ms for the optical and audio sensing modalities respectively.
As noted previously, the low error is due to the identical nature
of the two ENF sequences being compared with each other,
and the resulting errors are due to the delays from modulation
at the photon and the propagation delays in the air. As speed
of sound in the air is much lower than the speed of light, we
see higher errors with audio sensor.

2) Comparison with the Baseline: To put the performance
of our approach in context, we also implement NTP on our
IoT device (ESP32 Things) that communicates with a RPi4
gateway device over a BLE connection. This represents a
typical environment most sensing devices operate in. ESP32
performs NTP synchronization session every 15 seconds. For
the optical sensor, we implement another baseline that consists
of observing fluorescent lamps whose output fluctuates directly
in response to input sinusoidal voltage from the grid. From
figure 10a, we see that while median error for the optical
channel is similar to that of NTP, our approach achieves
better error spread and outperforms fluorescent light baseline
in both median and error spread. The fluorescent light base-
line performs indirect ENF observations from the fluorescent
light, which contains significant error. On the other hand,
our approach uses high precision circuit to record ENF and
broadcasts it to the optical sensor with minimal error.

For the audio sensor in Figure 10b, our median error is
slightly higher than the NTP baseline with a comparable error
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spread for both. The slightly higher but stable error for the
audio setup comes from the propagation delay over the air.
As speed of sound is significantly lower than radio waves. On
the other hand, NTP over BLE has lower median error. But,
large errors may be experienced sometimes due to queuing
and other delays on either end of the BLE connection.
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Fig. 10: Error comparison of proposed sensing approach to
baselines

B. Case Study

We leverage the ubiquitous ENF signal in modern sens-
ing devices to achieve wide area synchronization. We setup
two evaluation environments supplied by the same electric
network. Figure 11a shows four IoT devices deployed in a
work-space within an office building. The work-space has
several power outlets in the wall powering several appliances
including several LED screens, a printer and a coffee machine.
A single ESP32 device is equipped with optical sensor while
two devices are equipped with microphones. It also has RPi4
based Edge server measuring reference ENF and obtains UTC
timestamps for each ENF measurement. The server attached
to the RPi4 modulates and broadcasts the ENF measurements
into the environment.

Our second setup consists of a single ESP32 Things device,
interfaced with optical sensor, deployed in an apartment’s
living room (Figure 11b). This space also has several wall
powered electronic devices in it. It is also equipped with an
RPi4 based edge server that embeds ENF encoded timestamps
into the environment. To calculate the error in decoded times-
tamps, we obtain UTC timestamp for sensor data from all
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Fig. 11: Evaluation setup. Speakers and LEDs, which act as
transmitters, are connected to the edge server.
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our IoT devices in both these setups. All the IoT devices are
operating at sampling rate of 1KHz. We are using a baud rate
of 10 bits/second for these experiments, and decode ENF data
sequence of 2 minutes period using equation (1) to obtain a
UTC timestamp. These parameters have been selected based
on our studies in Section V-A. The preamble is transmitted
every 100 ENF measurements, and the packet size used is
100 bytes unless otherwise mentioned.

1) Time Errors between Co-located IoT devices: Figure 12a
shows time decoding errors in IoT devices in an office space.
We observe that median error for all the devices with respect to
local edge server is under 20 milliseconds (msec) and overall
errors are under 35 msec. Another important observation is
that the median errors for the optical devices (A & B) is lower
than the audio devices (C & D) due to the difference in speed
of sound and light in the air. While the light only takes few
nanoseconds to reach the IoT device, the propagation error
will be several milliseconds for the audio sensor.

We also determine the error among pairwise IoT devices
in figure 12b. An interesting observation is the error between
the same and different sensing modalities. The error between
optical (device B) and audio sensors (device C & D) vary
significantly. The error between two different sensing modal-
ities accumulates while the error between the same modality
experience an improvement. The audio sensors are better
synchronized with each other than they are synchronized with
the Edge server. It is because the timestamps encoded in ENF
sequences experience similar propagation delay over the audio
channel. So, both of them have a similar offset with the server
which is much larger than the error between the two audio
devices.

2) Time Errors between Remote IoT devices: The previous
section presents the time error among devices that share the
same physical location. We observed that the error between
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co-located IoT devices is less than 35 milliseconds. We can
also synchronize devices across physical spaces spread over
a wide geographical area. This area can be as large as
supplied by a single electric grid. Figure 13 shows the error
between IoT devices located at two distant spaces. The overall
error between the remote IoT devices is comparable to error
among co-located devices because the devices sample the same
electric grid via broadcasts from their respective edge servers.

We also observe lower median error between same sensing
modalities (devices A & B) than the different sensing modali-
ties (devices A, C & D). It is the same behaviour we observed
earlier where error across same sensing modalities is lower
due to similar propagation delays.

C. System Robustness

While our system is capable of achieving better performance
than other baselines in V-A, it is also robust to variations in
real world deployments. For instance, signal broadcasts can
be disrupted and produce an invalid ENF sequence with large
time error. We argue that an ENF sequence of length n with
a preamble every m data-points should contain n/m equally
spaced preambles. In our design, the IoT device validates the
received ENF sequence if the data packet has exactly n/m
preambles in a sequence of length n and packet size m and
all preambles are spaced at exactly m ENF measurements.
By adjusting packet size m, we can tune noise based signal
distortion with a trade off of transmission overhead.

VI. DiscUSSION & CONCLUSION

Our design provides time services to COTS sensing devices
at the edge by actively embedding universal timestamps in
electric network frequency signal broadcasts. We overcome
a variety of challenges in modulating unique ENF signals
over different sensing channels and then demodulating these
signals to extract universal timestamps. Though our approach
relies on an edge server, it does not require hardware or
software changes at the IoT devices. Our evaluation in indoor
environments shows our design’s extensibility to both local
and remote environments with a variety of sensing devices.

Extensible Design. In this paper, we only explore two of
the most common sensing modalities i.e. optical and audio
sensors. However, our insights can be extended to other sensor
types, for example, MEMs based inertial measurement units
(IMUs) are known for responding to sound waves [27]. In
future, we plan to extend our work with audio sensors to IMUs.

Universal Timing. The concept of universal timing was
introduced by NTP based on its applicability to all kinds of
devices. Recently, devices at the end of the network suffer poor
performance with NTP due to multihop synchronization errors
exacerbated by unreliable communication technologies. Our
ENF based sensing solution removes network based uncer-
tainties for end devices and provide universal time with high
accuracy, however it comes at the cost of maintaining an edge
time server. We argue that edge servers are already prevalent
in networking applications serving as gateways, which we can
leverage for timing capabilities for a modest cost.
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