
Trusted Timing Services with TIMEGUARD

Adeel Nasrullah
UMass Amherst

anasrullah@umass.edu

Fatima M Anwar
UMass Amherst

fanwar@umass.edu

Abstract—The importance of timing services in edge systems
makes them a lucrative target for privileged adversaries. Mali-
cious agents with Operating System (OS) privileges can stealthily
manipulate timing services and provide altered timestamps to
user applications. In this paper, we first demonstrate the ad-
verse impact of time attacks on the accuracy of sensor fusion
algorithms at the edge. Then, we introduce TIMEGUARD, our
proposed architecture that protects against time attacks and
provides trusted time to user applications. TIMEGUARD’s design
leverages the secure interrupt and memory primitives of trusted
execution environments (TEEs) to bypass untrusted privileged
software and acquire time securely. Yet, these secure primitives
come at a high computational cost. TIMEGUARD also introduces
a probabilistic security framework – bounded by a time error
– to limit the cost of our timing service. We prototype our
design on ARM TrustZone — the dominant secure architecture
in edge systems, and evaluate the trade-off in security, accuracy,
and system overhead. TIMEGUARD’s secure performance ranges
from a microsecond to tens of milliseconds at 3.9% and 1.2%
CPU overhead respectively, catering to a variety of application
requirements.

Index Terms—Trusted Execution Environments, Secure,
Timestamping, Operating Systems

I. INTRODUCTION

Timekeeping is crucial for the proper functioning of any
cyber-physical system (CPS). It facilitates the scheduling of
competing tasks to meet performance standards and establishes
causality between internal and external events [1]. Addition-
ally, timing services in edge platforms enable applications
such as pedestrian safety [2], and online legal contracts [3],
to function properly. Accurate time is also essential for the
optimal performance of deep learning-based sensor fusion
systems [4], and the ability to manipulate the system clock
enables even non-expert adversaries to attack systems, such as
the perception systems of autonomous cars [5]. Furthermore,
security mechanisms, including credential expiration [6] and
public key infrastructure (PKI) [7], depend on the integrity
of the system’s clock. A malicious OS can cause its security
subsystem to accept expired credentials by simply changing its
clock to a date in the past, potentially granting unauthorized
access to restricted resources. In short, by merely tampering
with the OS’s timing services, adversaries can degrade system
performance, incur financial losses, breach privacy, and cause
physical harm. Despite their critical role, modern systems lack
end-to-end secure timing services [8] and rely on conventional
cryptographic and TEE-based security measures for time se-
curity.

Few Many
Time requests per unit time

Se
co

nd
s

M
icr

o-
se

c
Re

qu
ire

d
Ac

cu
ra

cy

Banking
Transactions

Stock Trading
Apps

Legal
Contracts

Pedestrian
Safety

One Time
Passwords

Task
Schedulers

Sensor
Fusion

Time based
Policies e.g.
credential
expiration

Rate limiting
(avoid brute

force attacks)

Require!
Accuracy

Prioritize
Low Cost

Smart Phone
Applications

Smart Phone
AVs

Edge Servers

Fig. 1: Timing requirements of the edge applications

While secure timing sources exist in Trusted Execution
Environments (TEEs), user applications have limited access
to them. Researchers have proposed a few trusted clock
mechanisms, with the most notable ones being timeseal [8]
and ftpm [9], which present secure clock designs for Intel
SGX and Arm TrustZone, respectively. However, these are
only accessible within the TEEs, requiring applications to
execute inside the TEE for secure access. This poses a security
concern, as it significantly increases the size of the trusted
computing base (TCB) [10]. Additionally, such a mode of
execution may lead to a degraded user experience on inter-
active devices [9]. For instance, in ARM TrustZone, CPU
resources are shared between untrusted and trusted software.
The untrusted software, which implements most of the device
functionality (including user interface), uses secure services
provided by short-lived executions of the trusted software.
Long-running executions inside TrustZone for securely access-
ing trusted time can degrade user experience and may even
jeopardize the stability of the commodity OS [9]. These issues
indicate that existing designs for trusted timing services are,
at best, sub-optimal and, at worst, pose a security risk.

Designing a trusted timing service with system-wide avail-
ability poses challenges for several reasons. First, the un-
trusted OS controls access to the hardware clocks [11] and
mechanisms for communication between trusted and untrusted
software [8], [12], rendering the issuance of timing requests
and transfer of timing information insecure. The second chal-
lenge arises from the semantic gap between the untrusted
software and the TEE, as the TEE lacks a comprehensive

1

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00009

2
0

2
4

 I
E

E
E

 3
0

t
h

 R
e

a
l-

T
im

e
 a

n
d

 E
m

b
e

d
d

e
d

 T
e

c
h

n
o

lo
g

y
 a

n
d

 A
p

p
li

c
a

t
io

n
s
 S

y
m

p
o

s
iu

m
 (

R
T

A
S

)
|

 9
7

9
-8

-3
5

0
3

-5
8

4
1

-4
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
R

T
A

S
6

1
0

2
5

.2
0

2
4

.0
0

0
0

9

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Adeel Nasrullah

view of the untrusted software’s state and cannot verify the
identity of the client application. Ensuring time delivery to the
correct client application without incurring significant system
penalties proves difficult. Finally, accuracy requirements differ
among applications, as depicted in Figure 1. For example,
banking transactions and legal contracts demand high accu-
racy, where cost is a secondary concern, whereas applications
like sensor fusion and thwarting brute force attacks prioritize
a trusted timing service that offers frequent timing updates
with minimal overhead. Balancing accuracy and overhead in
a unified design is non-trivial.

Our first challenge arises from the traditional design princi-
ple of assigning the OS the highest privileges over system
hardware. This design primarily aims to enable the OS to
mitigate security threats from untrusted user applications by
limiting their access to critical system resources. For the same
reason, TEEs like ARM TrustZone do not permit applications
direct communication with secure software 1. However, this
also implies that an application’s timing requests to the TEE
may be tampered with or delayed by the untrusted OS. We
address this challenge by leveraging the secure memory and
interrupt primitives provided by the TEEs 2. We utilize the fact
that memory access violations by untrusted software trigger
a secure interrupt and use this to issue secure timestamping
requests. Once this interrupt is triggered, the execution control
flow transfers to the secure timing stack, which then returns
timing information from a trusted source. We use TEE’s secure
memory and interrupt primitives to ensure the OS cannot
intercept the secure timing request.

When an application invokes trusted software (by issuing a
secure timing request) via a memory access violation, the TEE
receives notification of this event. However, the semantic gap
between the TEE and the untrusted OS means the former lacks
a complete view of the latter’s state and cannot readily identify
the software entity initiating this timing request. Our second
challenge involves identifying the client that issued the timing
request despite this semantic gap. In a single-core system, the
application currently scheduled would be considered the client
application; however, in multi-core systems, two or more ap-
plications running on different cores may request timestamps
alternately, complicating the identification of the application
that initiated the time request. We propose a strategy based
on inter-processor interrupt (IPI) mechanisms to interrupt all
cores and identify the client application, albeit this approach
incurs significant system overhead. To mitigate this, we design
scheduling policies aimed at predicting the next processor core
likely to issue a timestamping request, thereby significantly
reducing overhead.

TIMEGUARD’s employment of secure primitives and IPIs
renders it robust against adversaries, yet these mechanisms
are costly and incur high overhead, particularly when timing
requests are frequent. This design is at odds with applications

1ARM’s smc instruction, which switches between non-secure and secure
modes, can only be executed in privileged modes.

2E.g., TrustZone Address Space Controller for ARM and Physical Memory
Protection (PMP) mechanism in Keystone.

that do not require high time accuracy but instead prefer a
low-cost timing service (Figure 1). To introduce flexibility into
our design, we add another mode to our trusted timing service
that offers probabilistic security at a lower cost. In this mode,
the system is configured to allow applications direct access to
the timing source, while hardware state monitoring ensures
untrusted software does not interfere. This is achieved by
periodically inspecting the hardware state and implementing
strategies that reduce the likelihood of a stealthy adversary
accumulating significant time error.

In summary, provisioning secure timing services is a non-
trivial task that requires adopting innovative approaches and
motivates us to design a flexible and secure time service with
the following contributions:

• We analyze various timing attacks by a privileged adver-
sary and demonstrate the effects of these attacks on the
accuracy of a sensor fusion algorithm.

• We present the design of TIMEGUARD, a trusted and
flexible timing service that operates in two modes, i.e.,
passive and active. The passive mode provides highly
accurate and secure timestamps, however, each timing
request incurs significant overhead, which increases as
timestamps are requested frequently. In such cases, the
active mode provides timing information at a lower cost,
determined by a secure configuration monitoring strategy.
It provides probabilistic security, i.e., the adversary can
reduce time accuracy within a fixed bound.

• We prototype our design on the iMX6 development
board and evaluate various aspects of our trusted timing
service: we quantify the cost and accuracy trade-off in
the presence of an adversary.

II. BACKGROUND & MOTIVATION

This section briefly discusses the components of a time
service, how they are subject to attacks, and the impact of these
attacks on prediction algorithms. It then concludes with an
examination of time services in trusted execution environments
(TEE).

A. Trusted Time Stacks

A timing service comprises i) a time source and ii) a
mechanism for transferring this time from the source to
the client. Both components must be secure to establish a
trusted timing service. The time source should be impervious
to influence by untrusted privileged software and should be
available in most TEE-based architectures. For instance, ARM
implements a physical counter [13], as a part of its generic
timer, which serves as a trusted timing source when configured
to be monotonic and at a fixed rate by the TrustZone [14]. In
RISC-V, mtime acts as a fixed-rate counter accessible to the
secure monitor (machine mode), which controls the interaction
of untrusted components with it [15]. Intel SGX, while lacking
access to hardware-based, high-resolution trusted time sources,
supports software-based trusted timing designs [8]. Although

2

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

a trusted timing source is found on most architectures, devel-
oping a secure time transfer mechanism to the unprivileged
applications remains a challenge.

B. Case Study: Sensor Fusion under Timing Attack
Timing services rely on non-secure communication for time

transfer. A privileged adversary may exploit these services
using one of the following strategies: adding a constant delay
of c time units to each timestamp requested by the victim. This
constant delay, difficult to detect, appears as latency from an
unknown system component from the victim’s perspective. Al-
ternatively, an adversary can add incremental delays to each
of the victim’s subsequent timestamp requests, masquerading
as clock drift. Or, it can add random incremental delays
to subsequent timestamps by varying the rate of increment
every few timestamps to simulate clock drift in response to
temperature changes.

Incremental Delay

Random Incremental Delay
Constant Delay = 2000 ms

2500 10000 17500
True Time (ms)

-4000

4000

0

Ti
m

e
De

lay
 (m

s)

(a) Perceived Time

2500 10000 17500
Time Delay (ms)

50
90

70
Ac

cu
ra

cy

Incremental Delay
Random Incremental Delay
Constant Delay = 2000 ms

(b) Accuracy Performance

Fig. 2: (a)Effects of malicious OS attacks on time perceived by user appli-
cations. (b) The drop in accuracy of a multi-modal deep learning algorithm
that uses attacked sensor data.

We evaluate a multi-modal deep learning-based sensor
fusion algorithm under these timing attacks to demonstrate
their effects. It is trained using a fraction of the CMActivities
dataset [16], comprising inertial, and audio data from various
participants engaging in physical activities. We compute the
prediction accuracy of the algorithm on the remaining dataset
and simulate timing attacks by delaying IMU data relative to
the audio. Figure 2a illustrates the time deviations during these
attacks, while Figure 2b displays the sensor fusion algorithm’s
accuracy deterioration due to manipulated timestamps. We
observe that the performance degradation caused by constant
delay is limited; however, the prediction accuracy degrades
almost linearly with the accumulation of time delay in incre-
mental attacks. Similar, sensor fusion algorithms are employed
in safety-critical applications, such as LiDAR-Camera based
perception systems in autonomous vehicles (AVs), where such
attacks can have serious consequences [5]. Typical attacks
on these perception systems necessitate creating carefully
crafted inputs and thus require significant domain knowledge.
However, a non-expert adversary can induce catastrophic
failures by remotely manipulating system time.

C. Trusted Execution Environment
igure 3a shows a simplified architecture of a generic TEE.

There are two modes of execution: non-secure (normal world)
and secure (secure world), which time-share the CPU re-
sources between them; that is, a given processor core either
executes in secure or non-secure mode. The secure mode also

has secure copies of some CPU registers and a protected
memory area that are inaccessible to the normal world. The
normal world runs a typical OS, e.g., Linux, Android, and user
applications, which are treated as untrusted. The secure world
runs a secure OS with a small Trusted Computing Base (TCB),
providing secure services like encryption, random number
generation, and secure storage. The switch between the two
worlds is expensive because it involves storing and restoring
processor states, and invalidating CPU and TLB caches to
prevent side-channel attacks. Both the normal world and
secure OS implement their own virtual memory for memory
protection, creating a semantic gap between them. The secure
OS is the most privileged component in the system and has
access to all system resources, including those of the untrusted
OS. The secure OS extends its services to the normal world
via trusted applications that have limited access to secure
resources, thus limiting the interface exposed to untrusted
software. For example, the TEE time service provides clock
source integrity but neither timeliness nor correctness for time
transfer.

III. THREAT MODEL AND DESIGN GOALS

Here, we describe our threat model, assumptions regarding
TEE primitives and design goals for our secure service.

A. Threat Model and Assumptions
Our adversary aims to stealthily manipulate the victims’

view of time. It intercepts a timing request issued by the
victim or the time response from the secure time service. If
successful, it either delays or alters the intercepted data to
manipulate the victim’s view of time.

Attacker’s Capabilities. We assume a privileged adversary
capable of executing code, accessing system resources, hijack-
ing exception handlers, and programming a timer interrupt.
These capabilities enable it to preempt the target program
arbitrarily or exploit preemptions resulting from other sources,
such as interrupts from a network device, to launch attacks.
It may take over rarely used global variables of the untrusted
operating system and can also profile the target program to
maintain statistics, such as the number and types of system
calls used by the victim. However, the adversary cannot
maintain shadow data structures, such as page tables, that
would require real-time synchronization with the actual page
table. Similarly, it cannot decompile a program binary to
perform code analysis or build its execution graph. These
tasks result in significant performance degradation of the target
system and create detectable signatures of the adversarial
activity, identifiable by existing security solutions [17], [18].
Finally, we assume that the system boots using secure boot
technologies and that the adversary only gains control after
the boot sequence is complete.

Target Platform Features. We make a case for TEEs such
as ARM TrustZone [19] or RISC-V Keystone [20], which are
widely available and utilized in edge applications. These TEEs
provide the secure primitives described earlier. If protected
memory is illegally accessed by the normal world OS, a

3

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

signal is sent to the secure world OS. Secure interrupts are
exclusively enabled, programmed, and received by the secure
OS.

Hardware

Normal
World

Secure
 World

Untrusted
(Rich)

OS

Client
App

Trusted
(Secure)

OS

Trusted
App

(a) TEE Architecture

Time
Gaurd
Client

Secure Time Source

Time
Source
Access Watchdog

Handler

Normal World Secure World

Active ModePassive Mode

TimeGaurd

App

Ke
rn

el
Us

er
sp

ac
e

So
C

(b) TimeGaurd Overview

Fig. 3

B. Design Goals
Our design, TIMEGUARD, builds on secure TEE primitives

and seeks to achieve the following goals:
1. Minimizing Attack Surface: To reduce the attack surface

against a stealthy privileged adversary, such as a compromised
OS, we enforce two security properties. First, (P1) the times-
tamp request should bypass the untrusted OS. Second, (P2) the
timing information should be returned without alerting the un-
trusted software. The former ensures that the malicious agent
cannot delay the timestamp request, while the latter deprives
the adversary of the opportunity to forge a fake response or
delay the timing information returned by TIMEGUARD.

2. Performance/Security Trade-off: The design should
balance the security requirements of diverse applications while
avoiding disproportionate overhead. A high overhead is accept-
able for most safety-critical applications, whereas applications
such as multiplayer games can tolerate some time error but
require frequent timestamps. To achieve flexibility, we imple-
ment a third security mechanism, (P3), that seeks to discover
stealthy adversaries probabilistically. Using this component,
we add another operational mode to our design with an
adjustable trade-off between overhead and the accuracy of
trusted time.

Moving forward, we present our design with reference to
ARM-based platforms that implement TrustZone. It is to be
noted that our design can be implemented on any TEE that
provides secure memory and interrupt primitives as described
in our threat model.

IV. DESIGN

TIMEGUARD operates in two modes: passive and active,
each designed to fulfill one or more of our stated goals. The
Passive mode addresses our first two security properties (P1
& P2). In this mode, security mechanisms activate solely upon
timestamp requests, hence operating passively. This mode
ensures the provision of accurate timestamps, even amidst
presence of an adversary, with an overhead proportional to
the frequency of timestamp requests. Conversely, the Active
mode is more lightweight but yields less precise timestamps.
Motivated by our third security property (P3), TIMEGUARD

continuously scans for the presence of the privileged adversary
in the active mode and imposes a fixed overhead.

A. Overview

Figure 3b presents an overview of our trusted timing service
design TIMEGUARD. In passive mode, it should transfer
control flow from the user space (TIMEGUARD client) to
the trusted software (TIMEGUARD handler) inside the TEE,
which is challenging, given the privileged position of the
untrusted OS that controls all communication mechanisms.
Secure interrupts can bypass the OS, but they are asynchronous
and are not suitable for generating synchronous timestamp-
ing requests. We propose, timelock, a novel mechanism for
TIMEGUARD’s client to psuedo-synchronously trigger secure
interrupt and compensate for the delays involved. Once, TIME-
GUARD handler receives a request, it acquires timestamp from
the secure time source and delivers it back to the application.
However, the semantic gap between the untrusted and the
trusted software makes it challenging to identify the correct
client application. We propose data-driven policies to identify
and deliver the timestamp to the correct application.

In the active mode, TIMEGUARD enables fast access to
the trusted timing source. To achieve this, applications are
allowed to access the timing source directly without relying on
untrusted or the trusted OS software. It is challenging because
untrusted OS can intercept the applications’ direct accesses to
the time source and launch man-in-the-middle attacks [21].
Our proposed TIMEGUARD watchdog (figure 3b) actively
searches for ongoing attacks against the victim application de-
spite having a limited view of the untrusted hardware/software
states. Active and passive modes, when combined, enable
TIMEGUARD to provide applications with an adjustable trade-
off between security and performance.

B. Passive Mode

The passive mode’s components are present in both normal
and secure worlds: TIMEGUARD client in the unprivileged
normal world and TIMEGUARD handler in the privileged
secure world. The client issues the timestamping request
while the handler returns trusted time securely to the user
application.

1. Secure Psuedo-Synchronous Timing Requests. An
application’s request to the secure TEE software is routed
through the untrusted OS. While this route ensures data
integrity through encryption mechanisms, it does not guarantee
timely availability of TEE services to the user applications. It
poses a challenge for the design of trusted timing services
where freshness of timing information must also be ensured
in addition to the timestamp’s integrity. We overcome this
challenge using the secure memory and interrupts primi-
tives implemented by the privileged TEE. A typical TEE
memory protection mechanism (e.g. Trustzone Address Space
Controller [22], RISC-V PMP [15]) can set permissions on
different memory regions. The reserved memory regions are
inaccessible to the untrusted OS and the user applications. If

4

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

the untrusted software attempts to access these protected mem-
ory regions, a secure interrupt will be generated notifying the
TEE about potential memory violation attempt. TIMEGUARD
client leverages this memory protection mechanism to issue a
timestamp without alerting the untrusted OS.

Initiating timestamping request using a memory based
mechanism poses two challenges: i) how to enable successful
memory access without notifying the untrusted OS, and ii) how
to intercept the asynchronous secure access in a synchronous
manner. To address the first challenge, we configure memory
protection controller to return an okay response upon a write
attempt to the protected memory, and return zero when the
same memory is read by the untrusted software. It makes our
request generation transparent to the untrusted OS enabling
our first security property P1, and depriving the adversary of
the opportunity to delay this request. Refer to appendix for
technical details of memory access mechanisms.

To address the second challenge, we introduce timelock: i)
it ensures that the user application waits for the timestamp
return before moving forward, and ii) it measures the time
while it awaits the secure memory interrupt to trigger the
TIMEGUARD handler. With timelock in place, an application
continues its execution only after the timestamp request is
completed. Timelock enables the TIMEGUARD’s timing API
to appear synchronous (pseudo-synchronous) from the appli-
cation’s perspective.

Algorithm 1 Time Lock
1: volatile branch var ← 0
2: function TIMELOCK
3: if branch var == 0 then
4: LDR R0, 0
5: label : loop
6: ADD R0, 1
7: B loop
8: else
9: return 0

10: end if
11: end function

Timelock compensates for the timestamp acquisition delay
incurred while waiting for the asynchronous interrupt. It
employs a busy-wait mechanism that increments a variable
with each clock cycle as described in Algorithm 1. It creates
variable branch var initialized to zero. A branch condition,
based on whether branch var is zero, determines whether to
engage the infinite loop (lines 5−7) or bypass it. This branch
is deliberately constructed to always trigger the infinite loop,
which in turn increments a CPU register each cycle, effectively
acting as a counter incrementing every two CPU cycles. This
mechanism is central to our timelock strategy as it awaits
TIMEGUARD handler’s execution control and quantifies the
duration spent in this state.

The timelock design, incorporating an infinite loop, enables
precise measurement of secure memory interrupt delays but
introduces two challenges: (i) compiler optimizations may
eliminate code following timelock, considering it unreachable,
and (ii) the absence of a loop exit mechanism. To counter
the first issue, we declare the variable branch var as volatile

(line 2), which signals to the compiler that its value might
change in ways unknown to it, ensuring that it does not
optimize away subsequent code as unreachable. In practice,
branch var remains zero, and the branch always resolves
to execute the timelock’s infinite loop. The TIMEGUARD
handler addresses the second challenge by resuming execution
from the instruction following the infinite loop (line 11) after
delivering the trusted timestamp to the application. Although
a branched loop could serve as an alternative, it introduces
measurement uncertainty due to CPU branch prediction inac-
curacies, resulting in unaccounted wasted cycles.

After the timelock is released and the memory interrupt de-
lay is measured, the control flow is passed to the TIMEGUARD
handler. It acquires secure timestamp tA (reads the Physical
Counter [13] for Trustzone based design), and calculate the
final timestamp t = tA − tL − tS by compensating tA for ac-
quisition delay which comprises of i) secure memory interrupt
delay tL (measured by timelock) and ii) time elapsed during
world switch tS (platform-specific and measured empirically
during bootstrapping). To transfer this secure timestamp to the
application, it is critical to identify which application initiated
the timing request.

2. Data-Driven Client Identification. On a single core
system, client identification is not required and the handler
returns the timestamp to the program that was interrupted by
the secure memory interrupt. The same does not hold true
for multi-core systems, where secure memory interrupt can be
received by any processor core as it is not a processor-specific
interrupt. Further, the semantic gap between the normal and
secure world means that TIMEGUARD is unaware of the
cores scheduled by the normal OS. To identify the core that
initiated time request, TIMEGUARD handler checks if the
current core has an active timelock, and completes time transfer
if it detects one. Otherwise, the handler issues secure inter-
processor interrupt (IPIs) to all other processor cores to check
if they have an active timelock. This naive strategy is effective
but inefficient, as each timing request generates one interrupt
on each core. On a n-core system, it leads to n times the
resources it would take on a single-core system.

We propose a data-driven approach to reduce the cost
of dispatching trusted time on multi-core systems. Taking
inspiration from branch prediction mechanism in the processor
cores, we adopt policies for speculatively predicting the core
that may issue next timestamp request based on historical
data. TIMEGUARD handler sets the affinity of secure memory
interrupt to the core predicted to receive the next timestamp.
For each true prediction, we avoid n−1 interrupts and a good
policy design would drastically reduce the overhead of passive
mode operation.

Our proposed speculative core predication policies include
random selection that randomly chooses a core to schedule
next timing request, frequency-driven strategy that schedules
the core with the most timestamp requests. It works well in
scenarios when the OS anchors the client to a single core or
schedules client programs on a small set of cores while putting
others to sleep for energy conservation. It may not perform

5

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

well on a high workload system where the timestamp requests
are more uniformly distributed across processor cores. Most
Recently Used (MRU) policy schedules the same core that
issued the current request for next timing request. This strategy
assumes that a program often requests multiple timestamps
within a short interval. It would work well when one program
issues more frequent timestamps than others.

Finally, the SchedTrace policy enhances core prediction
performance across a broader range of scenarios by monitoring
scheduler and program behavior. However, it encounters a
limitation as it requires access to client process IDs (PID),
which are unavailable. To address this issue, each client is
assigned a unique number, RAND CONSTANT , during
registration, generated by the TEE random number generator,
to act as a proxy for PID (proxyPID) (see Section IV-D). By
utilizing the proxyPID, we track each client’s most recent core
affinity and the intervals between its successive timing requests
from the time of its launch. Upon receiving a timestamp
request, we calculate the average interval between timestamps
for each client. Using this average and the timing of the last
request by each client, we estimate the remaining time until
its next request, tR. The policy then assigns the core with the
smallest tR to handle the forthcoming timestamp request.

3. Secure Timestamp Transfer. Having scheduled a pro-
cessor core to receive next timestamp, TIMEGUARD handler
completes the timing request by transferring the secure times-
tamp to the client. Standard data transfer between the TEE and
the untrusted realm occurs through the shared memory. If used
for time transfer, a malicious OS can detect timestamp transfer
as soon as timestamp is written to the shared memory. It is
a violation of our second security property (P2) and exposes
TIMEGUARD to delay attacks.

We preserve P2 security property by using CPU register R0
for timestamp transfer. It is the same register used by timelock
for measuring secure memory interrupt latency (algorithm 1).
TIMEGUARD handler writes the timestamp to R0 and switches
to normal world to resume application’s execution. Remember
that timelock runs an infinite loop, and normal resumption
would put the client program in forever loop. To prevent this,
TIMEGUARD handler adds an offset to the program counter
(PC) before switching to the client. Originally, PC points to
one of the two instructions shown on lines 6-7 in algorithm 1,
which is next in line for execution. If the current instruction
is the one on line 6, we add +8 to the program counter
register3 (+4 for the instruction on line 7) before returning
to the normal world. The user application would now resume
from the first instruction following the timelock and continues
further execution.

Figure 4a shows the step-by-step operation of TIME-
GUARD’s passive mode: 1⃝ The user application generates
a pseudo-synchronous timestamp request via illegal access to
the protected memory and activates timelock, 2⃝ the address
space controller returns a valid response, and 3⃝ triggers a
secure memory interrupt. 4⃝ The TIMEGUARD handler, if

3Assuming each instruction is 4-bytes (or 32 bits) wide. In the case of
variable length instructions, offset would take on different values.

MMU

Delay Compensated
Timestamp

Client Prediction

Secure Time Source

Address Space Controller

Ti
m

eG
au

rd

Ha
nd

ler

Memory

1

Normal World Secure World

Ke
rn

el
Us

er
sp

ac
e

So
C

TimeLock

Ps
eu

do
-

Sy
nc

hr
on

ou
s

Re
qu

es
t

Trusted
Timestamp

TimeGaurd
Client

Timestamp
Request Latency

Client ID

Protected

1

2

3

4

4

5

(a) TIMEGUARD’s passive mode operation.

Security
Status

 MMU Secure Time Source

Address Space Controller

TimeGaurd
Watchdog

Memory

1

Normal World Secure World

Ke
rn

el
Us

er
sp

ac
e

So
C

TimeLock

Secure
Timer

TimeGaurd
Client

Protected

2

2

2

A C

C

C

Co
nt

ro
l

Re
gi

st
er B

(b) TIMEGUARD’s active mode operation.

Fig. 4

necessary, switches to the client program’s timelocked core,
reads the secure time source and timelock to calculate a delay-
compensated timestamp. Finally, 5⃝ we set the secure memory
interrupt’s affinity to the core predicted to receive the next
request and return the timestamp to the application via CPU
registers. This sequence of steps successfully returns a trusted
timestamp to a user program, bypassing the untrusted OS.
However, on rare occasions, a timelock may be preempted by
the untrusted OS scheduler, in which case the TIMEGUARD
handler will not find any timelocked core. Such a situation
could also arise when the secure memory interrupt is triggered
by untrusted software accessing the secure memory (and not a
TIMEGUARD client). In both cases, the TIMEGUARD handler
resumes normal world execution and, to distinguish between
the two scenarios, preempts the normal world execution after a
short interval to check if the program has been rescheduled. If
the preemption was non-malicious, the TIMEGUARD handler
finds the timelocked core in one or more such follow-ups.
Otherwise, it alerts the TEE software of a secure memory
violation.

Evaluating TimeLock. Timelock is at the heart of passive
mode’s psuedo-synchronous timing requests. We perform mea-
surement study to validate the design choices involved in it’s
implementation. We also look at passive mode’s timestamp
acquisition latencies and quantify TIMEGUARD’s ability to
measure them. Finally, we investigate how the accuracy of
trusted time provided by passive mode changes with the
introduction of timelock.

Measurement Setup: Our measurement setup consists of

(a) (b)

Fig. 5: a) Secure Memory Interrupt and b) IPI latency distributions observed
over thousand measurements.

6

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a)

!-𝜎

!+𝜎

(b)

Fig. 6: a) Normalized Timelock and Branchlock Measurement Errors b) CPU
cycles consumed during switch from normal world to the secure world.

i.MX6Q Sabresd board equipped with 4 Cortex-A9 cores [23].
It’s a TEE enabled SoC with Trustzone Address Space Con-
troller (TZASC) that enforces memory protection and imple-
ments secure memory interrupt (tzasc int). We use these
primitives to realize TIMEGUARD’s passive mode prototype,
which uses standard embedded Linux, and OPTEE as OS for
the normal and secure world, respectively. For our evaluations
we use CPU cycle counter as our reference clock because of its
proximity to the CPU and minimum latency. It increments with
each instruction cycle executed by the CPU, and stops when
the CPU is idle. However, that does not affect our evaluations,
as the CPU runs continuously during the completion of a
timing request. Finally, we fix the CPU frequency to 996 MHz
to avoid conversion errors from variable CPU frequency.

Timestamp Acquisition Latency: Timelock measures laten-
cies from two sources: i) secure memory (tzasc int) and
inter-processor interrupt (IPI), both of which vary widely
as evident from their distributions shown in Figure 5. The
standard deviations of tzasc int and IPI latency distributions
are 126 and 2160 clock cycles, respectively. Without time lock,
this spread would not be captured and result in an uncertainty
of 2.3µs in the trusted timestamps, which timelock has reduced
by 12 times to 0.18µs.

World Switch Latency: The total uncertainty in passive
mode’s timestamps also includes variations in world switch
time. Figure 6b shows world switch times for our prototype,
which have a standard deviation of 828 clock cycles. With
no mechanism to measure the variation of world switch time,
its contribution to the timestamp uncertainty would be upto
0.83µs.

Timelock Accuracy: Figure 6a shows measurement errors
for two implementations of timelock. TimeLock is the stan-
dard implementation from algorithm 1 while BranchLock is
implemented using a finite loop, which is executed using a
conditional branch instruction. To measure the accuracy of the
two, we modify algorithm 1 to insert an additional instruction
between lines 6−7 to copy CPU cycle count to register R1. We
compare the values in the two registers to obtain the reported
error ϵ = R1−4∗R0

R1
4. We see that our timelock implementation

outperforms (by upto 48% at 40% CPU load) the branched
version which is affected by CPU’s mis-predictions of the
branch prediction hardware.

Passive mode Overhead: The tzasc int, IPI and world
4Each modified loop iteration takes 4 clock cycles.

switch operations, all part of passive mode timing call, takes
almost 27325 clock cycles. While, IPI costs will be partially
mitigated by core prediction strategies, core prediction com-
putations and timestamp transfer would add yet more cycle
time to the passive mode timestamp acquisition, thus making
it expensive and not designed for frequent time calls.

C. Active Mode

This mode offers a fast timestamping interface with a
relatively low overhead by trading off timing accuracy. TIME-
GUARD’s active mode enables a customizable balance between
security and cost, catering to applications like task schedulers
that require moderate accuracy but generate frequent times-
tamp requests [6]. Below, we describe the design components
of active mode:

1. Simulated Secure Path. Modern edge platforms provide
secure timing sources in the hardware, (section IIA) which
are configured by the secure world but are accessible in both
worlds. Further, the SoC can be configured to enable direct 5

userspace access to secure timing source. It is often done
by writing to a control register on the SoC (e.g., setting
the PL0PCTEN and TSD bits in the CNTKCTL and
CR4 registers to 1 on ARM and Intel platforms, respec-
tively.). We refer to this register as control register since it
controls the userspace application’s access to the trusted time
source. TIMEGUARD leverages this functionality to provide
user applications a direct path to the secure time source. A
drawback to this approach is that untrusted OS can modify the
control register to intercept timing requests and return forged
timestamps. To mitigate this threat, we introduce TIMEGUARD
watchdog that implements our third security property (P3). It
monitors the state of the control register, and alerts the user
application for an unauthorized update. Using TIMEGUARD
watchdog, active mode simulates a secure timing path.

2. TIMEGUARD Watchdog. The watchdog monitors con-
trol register’s state for a short duration to discover a stealthy
attacker while preserving application’s performance. Watchdog
adopts a probabilistic approach with recurring inspections of
the control register at random intervals. Not knowing when
an inspection will take place, a stealthy adversary has an
incentive to limit its attacks to short intervals. This scheme
does not eliminate the attacks completely but ensures the time
error introduced by the adversary stays within a bound i.e.
we can trust that the timing information is accurate (secure)
with a certain resolution. Additionally, the inspections should
circumvent the untrusted OS, which motivates our design of
watchdog inspections via another secure interrupt i.e. the timer
interrupt. Unlike other secure interrupts, it can preempt the
normal world execution at a pre-determined time with a high
accuracy.

Watchdog Inspection Policies. A privileged attacker can
manipulate control register at arbitrary duration and at arbi-
trary times for stealth operation using either scheduler events
or untrusted timer interrupts. We design three policies for

5By executing a CPU instruction which is an atomic operation and
transparent from OS perspective.

7

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Policy A Policy B Policy C
µ|σ|max Pavg µ|σ|max Pavg µ|σ|max Pavg

Attack 1 0.5|0.29|0.99 0 0.5|0.29|1.99 0.5 0.5|0.29| 2m
n

2n−1
2nm

Attack 2 0.25|0.22|0.99 0 0.25|0.22|1.99 0.025 0.25|0.22| 2m
n

0.025n
m

Attack 3 0.08|0.32|0.1 0 0.08|0.29|0.1 0.008 0.08|0.29|0.1 0.008n
m

TABLE I: Time errors and detection rate of privileged attacks against
watchdog policies. The reported figures were calculated assuming random
variables c, d, i were chosen randomly from a uniform distribution. Time error
is normalized with respect to inspection period p and reported in the format
{mean|std. dev.|max}

inspecting the control register state in the presence of these
stealthy attacks. These policies stipulate that the watchdog
performs one control register inspection in a given time
period. In each period, the watchdog chooses the instant
i ∈ period to perform this inspection. The two variables are
tuned by the watchdog to implement different policies.
Policy A: Watchdog period is p = tS , and the inspection time
i = 0 i.e. occurs at the start of the watchdog period. Here tS
is the untrusted OS’s scheduling period in µ-seconds.
Policy B: Watchdog period is p = tS , and the inspection time
i ∈ N is selected randomly from the set {0, p

10 ,
2∗p
10 , ..., p}.

Policy C: Watchdog period is p = m∗tS
n where m,n ∈ N,

and the inspection time i ∈ N is selected randomly from
the set {0, p

10 ,
2∗p
10 , ..., p}. This policy allows us to tune the

inspection period, with higher period resulting in lower costs
but potentially higher time error and vice versa.

An adversary trying to evade the watchdog makes the fol-
lowing observations: attacks longer than the watchdog period
p will almost certainly be detected, thus, an ideal attack is
always smaller than p. Further, if p > tS , it should make OS
attacks more effective, an incentive for the watchdog to keep
p ≤ tS . However, a p < tS increases the likelihood of the
adversary being discovered, but watchdog ends up incurring
higher overhead a disincentive for it to choose p < tS . Given
this, stealthy attacker, being unaware of p, can choose p = tS
to design its attacks for maximize the damage and opt for one
of the following three attack strategies:
Attack 1: The attack is launched for a fraction c of the interval
(0, tS) starting at 0 where c is chosen randomly. Its a relatively
simple attack that attempts to evade watchdog by introducing
uncertainty in ending the attack.
Attack 2: This attack lasts from (d, d + c) where both d
and c are chosen randomly from intervals (0, p) and (d, p)
respectively. This attack further adds to the uncertainty making
it difficult for the watchdog to detect the stealthy attacker.
Attack 3: This attack lasts from (d, d + c) where both d
and c < p

10 are chosen randomly from intervals (0, p) and
(d, p) respectively. It builds on previous attack by reducing
the maximum attack duration.

Policy Analysis. We compute time errors (µ,σ,max) in-
troduced by privileged attacks during a scheduling interval tS
and their detection rates (Pavg) against the proposed watchdog
policies (Table I). Time error is normalized over the watchdog
inspection period p, and we assume random variables c, d, i
are uniformly distributed.

First two policies A and B, are identical except that the
inspection instant for Policy B is chosen randomly while it

is fixed for Policy A. Time error distribution is the same for
the two across all three attacks. However, they have different
bounds on the maximum error and their attack detection rates
also differ. At a first glance, Policy B’s error bound is twice
the Policy A’s bound. The non-zero detection rate Pavg of
Policy B means it does not allow unchecked error accumulation
over consecutive time periods, which is not the case with
Policy A. Note that Policy B’s detection rate is modest for
a given detection period yet it puts a bound on the maximum
accumulated time error. For example, it would detect the attack
2 and attack 3 in 40 and 125 inspection periods respectively.

Policy C generalizes the success of Policy B in imposing
a maximum accumulated error bound on the stealthy attacks.
It provides us with knobs (m & n) to adjust accuracy-cost
trade-off. We can increase the inspection period using m which
would extend it to m∗tS , raising the bound on the accumulated
time error while reducing the cost of inspections. For m = 2,
the time error would accumulate up to 20p before the attack is
detected, i.e. twice the time error at half the cost. On the other
hand, n increases the number of inspections in one scheduling
period tS . It bounds the accumulated error to a lower value
at n times the cost. With n = 2, both attack 2 and attack
3 only accumulate time error up to 5 ∗ p at double the cost.
To summarize, time error bound achieved by TIMEGUARD
watchdog is inversely proportional to the overhead it imposes
on the system.

3. TIMEGUARD Trust Signal TIMEGUARD watchdog im-
plements probabilistic strategies to discover a stealthy attacker.
This discovery is only useful, if it is communicated to the user
application. Watchdog uses domain-shared read-only6 memory
to signal trust to the user application. When watchdog is
launched it writes 1 to this memory location which signals
absence of an adversary, and updates it to 0 if and when it
detects an adversary. The user application checks this memory
location with every timing request to decide if it should trust
the timing information it read from the trusted timing source.

Figure 4b shows TIMEGUARD’s active mode operation. The
watchdog inspection operations i.e. A⃝ secure timer interrupt,
B⃝ control register inspection, and C⃝ trust status update
are recurring events, and together they implement watchdog
inspection policy. To access time, 1⃝ an application reads the
trusted time source in the hardware and subsequently 2⃝ it
reads trust signal to determine if the timing information is
trustworthy.

D. Bootstrapping Trusted Time
For an application, secure registration with TIMEGUARD is

a prerequisite for using the API. Applications follow a four-
step process to securely register with TIMEGUARD. 1⃝ The
user application invokes TIMEGUARD through a TEE driver
that uses an smc call to switch to the secure world and passes a
secret already known to TIMEGUARD. 2⃝ Upon receiving this
secret, TIMEGUARD saves the page table base register pointing
to the application’s page table, and then 3⃝ adds three pro-
tected memory mappings to the application’s page table. One

6for the normal world

8

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

of these mappings is used by TIMEGUARD’s passive mode to
generate a secure timing request. The second location is used
by the active mode to signal trust, while TIMEGUARD writes
a random number RAND CONSTANT to the memory
location indicated by the third entry. This number is used for
identifying client applications in passive mode. It is important
to highlight that TIMEGUARD only marks these three entries
as protected to avoid the overheads that would arise from
normal to secure world context switches for each page table
modification request if the entire page table were marked as
protected. 4⃝ Finally, TIMEGUARD returns an encrypted secret
that will be sent to the trusted remote server, informing it of
the availability of the trusted time service.

V. SECURITY ANALYSIS

In this section, we present a security analysis of how our
design preserves security properties P1 − 3 from section IV.
We describe attacks that may be employed to subvert one
or more of these security properties, and how TIMEGUARD
protects against such attacks:

Hijacking Timestamp Requests. If an adversary can pre-
dict when a timestamp request will be generated via memory
access by the passive mode, it can issue an interrupt right
before the timing request. If successful, the adversary can
put delay between the event that victim wants to timestamp
and when the actual timestamp will be obtained. Similarly,
in active mode, the adversary will momentarily change the
control register (CNTKCTL [21]), launch the attack, evading
detection by the watchdog. However, to launch this attack
successfully, an adversary needs to precisely monitor each
instruction being executed and interrupt just before the timing
request instruction. This task will require detailed profiling of
the program behavior including branch prediction, as well as
determining when the target instruction will be executed. It
means that attacking the TIMEGUARD takes significant time
and computational resources on the attacker’s behalf. With the
attacker not having access to the physical device, such profiling
becomes extremely difficult.

Interrupting the Timelock. An attacker may want to exploit
the fact that victim application would put the core in a
timelock. On a mult-core system, cores can monitor each
other to detect timelock. Once detected, it can be pre-empted
using a high priority IPI. Again to launch such an attack,
the adversary needs to launch continuous interrupts, whose
period will have to be smaller than the timelock’s duration.
As shown in the figure 5a, this period is small (in the order
of few hundred cycles) and the adversary would need to
launch frequent interrupts degrading system performance and
revealing itself. Even when interrupted successfully, it will be
preempted by the execution of the secure memory interrupt, as
secure interrupts typically suspend all normal world activities
including interrupt. This attack is not only difficult to launch
but also ineffective given the use of secure memory interrupts
in our design.

Page Table Manipulation Attack. An adversary can easily
identify the table entries added by TIMEGUARD, and it might

modify these entries to trigger a fault on memory access. If
successful, the adversary would imitate TIMEGUARD behavior
but return incorrect timing information without ever invoking
TIMEGUARD handler. In case of active mode, it would return
a false trust signal. However, the page table entries used by
TIMEGUARD are marked read only during bootstrapping, and
any attempts to modify them will trigger a secure memory
interrupt informing TIMEGUARD of a potential threat.

Hijacking Timestamp Transfer. In passive mode, an at-
tacker may want to interrupt the target program right after
it returns the timestamp and just before the timestamp is
consumed. To achieve this, processor cores would monitor
each other to check if one or more of them are executing in
the secure state. If yes, an IPI would be sent to this core. Now,
when TIMEGUARD handler returns the timestamp, the CPU
will immediately receive the IPI and switch to kernel mode
which gives the adversary a chance to modify the returned
timestamp. However, TIMEGUARD handler masks the IPI for
the core receiving the timestamp. This design decision ensures
that there is no immediate interruption to the client programs
execution. Other cores may unmask the IPI, but that gives the
program enough time to consume the received timestamp.

Timing Attacks on Real-time Tasks For certain real-
time applications (such as an event-triggered system), adver-
saries could reasonably assume that a timestamp is requested
shortly after the victim is scheduled. This would allow them
to intercept and manipulate the timing requests. However,
TIMEGUARD can reliably detect such instances. In case of the
passive mode, once the timestamp request is initiated it would
always trigger TIMEGUARD handler. And as we discussed in
section IV-B, the absence of a timelocked core would indicate
an on-going attack. In case of the active mode the attack
window i.e. the active-mode timestamp return duration (< 100
cycles), is very small and significantly reduces the likelihood
of precise interception by the stealthy adversary. Increasing
the likelihood of successful spoofing requires the adversary
to expand the window size, increasing the chances of its
detection.

Exploiting Client Identification Strategies for Denial of
Service Attack. An adversary may launch several user appli-
cations to flood the passive mode with fake timing requests
through secure memory violations. These spurious requests
significantly affect the accuracy of client identification strate-
gies and cause the TIMEGUARD handler to interrupt all system
cores in response to each timing request. Although this attack
would severely degrade system performance, it would also be
detected immediately as the system is rendered dysfunctional,
prompting system administrators to take mitigation steps.

VI. IMPLEMENTATION & EVALUATION

For the evaluation of our trusted timing service, we extend
our prototype from our measurement study in section IV-B
to include active mode components. Notably, we use secure
physical timer [24] available in ARM Trustzone to implement
TIMEGUARD watchdog. We start by evaluating the perfor-

9

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Fig. 7: Client Identification strategy performance with number of requests
received per second.

Fig. 8: Client identification strategy performance with with varying number
of requests per second received from varying number of clients.

mance of core prediction policies that are integral to passive
mode’s responsiveness and cost on multi-core systems.

(a) (b)

Fig. 9: a) Client identification strategy performance with number of clients
using the API simultaneously, b) TimeGaurd’s active mode is 20 times more
responsive than the Linux system-call for time clock gettime which is 12
times less expensive than the TIMEGUARD passive mode API.

A. Data Driven Client Identification Strategies

Figure 7 shows the performance of our client identification
strategies with three different rates of requests issued by 4
clients, each pinned to one of the four processor cores, under
different system loads. We see that MRU and SchedTrace
perform well across different request rate and under different
system loads. MRU ’s good performance is expected since
its design suits our experimental setup of few clients which
are distributed uniformly across available processor cores.
Similarly, with few programs to keep track of, SchedTrace
demonstrates better predictive power.

We also test our policies using varying number of time
stamping clients. Figure 8 shows performance of our strategies
with 1, 3 and 10 clients (not pinned to any specific core)
requesting timestamps at different rates. We see that MRU
performance degrades with higher number of clients because
they are more likely to issue timestamp requests one after the
other. This is not conducive to MRU design, which thrives

upon receiving repeated requests from a single processor core.
This is further validated by our results from Figure 9a which
shows policy performance with even higher number of clients.
SchedTrace performance also degrades significantly with
more than 10 client programs because of complex schedul-
ing. However, SchedTrace consistently performs well across
different levels of CPU utilization, timestamp frequencies and
number of clients. Its performance does degrade significantly
with very high number of time-stamping clients but it still re-
mains our best prediction strategy. Hence, we use SchedTrace
as our core prediction policy for further evaluations in this
section.

B. Responsiveness

We measure responsiveness in terms of number of clock
cycles taken to complete a timing request. It determines
the smallest duration that can be measured with a timing
API and also decides the timing service’s overhead on the
system. We evaluate the responsiveness of both the active and
passive mode APIs and compare them against Linux timing
API get clocktime. Figure 9b shows the responsiveness of
TIMEGUARD APIs with varying system load. Notably, our
active mode API is extremely responsive, it takes 47 clock
cycles on average and is 20x more responsive the Linux’s time
API. It is because, in active mode, client directly reads the
time from the trusted source without any context switch to the
kernel or the TEE. It also means active mode’s overhead comes
from watchdog operation, and should stay fixed irrespective of
timestamp frequency.

The passive mode’s API has an average response time of
approximately 13000 clock cycles on a single core system,
and its 12x less responsive than Linux API. On a multi-core
system, the response time increases significantly to an average
of more than 27000 clock cycles. Even though our cross-
prediction schemes (SchedTrace in this case) mostly predict
the correct destination, the failures result in more than double
the cost of correct prediction. This low responsiveness hints
at high overhead that is proportional to the frequency of the
API use.

C. Accuracy

Our evaluations suggest that TIMEGUARD’s passive mode
has low responsiveness and higher overhead compared to
active mode. On the other hand, passive mode API provides
trusted time accurate to 1 microsecond (section IV-B). To
analyze active mode’s performance, we empirically evaluate
watchdog’s policies against privileged adversaries attacks laid
out in section IV-C. For this experiment, we launch four
different user applications, one for each processor core, where
the OS scheduling period is tS = 10ms. Similarly, TIME-
GUARD watchdog is active on all four cores as does our
adversary. We run the experiment for an hour and take repeated
measurements and report the results in Table II. Similar to
our theoretical analysis, we report the mean (µ), standard
deviation (σ) and maximum (max) time error induced by a
stealthy adversary during one scheduling period. Further, we

10

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Policy A Policy B Policy C (m = 2) Policy C (n = 10)
µ|σ|max Pavg µ|σ|max Pavg µ|σ|max Pavg µ|σ|max Pavg

Attack 1 1.67|2.36|9.38 0 1.68|2.42|9.67 0.446 1.83|2.40|9.35 0.1995 1.69|2.35|9.66 0.9426

Attack 2 0.651|1.48|7.997 0 0.685|1.55|9.06 0.248 0.56|1.35|7.68 0.1165 0.589|1.38|8.50 0.7922

Attack 3 0.026|0.12|0.996 0 0.044|0.16|0.973 0.0795 0.037|0.154|0.995 0.0358 0.041|0.159|0.977 0.6918

TABLE II: Efficacy of TIMEGUARD watchdog efficacy against attacks launched by the privileged adversary. Mean (µ), standard deviation (σ) and maximum
error (max) are given in milliseconds, while attack detection rate Pavg ∈ (0, 1).

report detectability of an attack Pavg , which determines the
maximum accumulated error.

We see that time error statistics are all inline with those
computed theoretically (table I). However, the detection prob-
abilities of Policy B and C are smaller than the theoretical
estimations, which increases the bound on maximum accumu-
lated error by a small margin. Also, Policy C is evaluated with
two settings: i) with twice the inspection period of Policy B
(m=2) and ii) with 1

10 th the Policy B’s period. In the first
case, the detection probabilities are halved which doubles
the accumulated error bound, while in the second case, the
detection probabilities have increased significantly reducing
the bound on maximum error.

Figure 10a shows time errors accumulated under Attack 2
for policies B, Cm=2 and Cn=2. We see that the accumulated
time error for these policies are 11.89ms, 34.18ms and
5.24ms respectively. We see that with watchdog inspection
periods p, 2p and p/2 the accumulated error is well under
theoretical bounds of 10p, 20p and 5p. This is because the
theoretical analysis implicitly assumes that the victim program
requests timestamps uniformly over the OS scheduling period
tS . However, our client programs for this test requested a fixed
number of timestamps each scheduling period but at irregular
intervals, which significantly decreases the error an adversary
manages to accumulate since it intercepts fewer number of
timestamps than our theoretical analysis assumed.

Our evaluations validate our theoretical bounds on the time
error accumulation under stealthy attacks. Further, it also
demonstrates the adjustable nature of cost versus security
(measured in terms of error in trusted time) trade-off provided
by TIMEGUARD’s active mode.

(a) (b)

Fig. 10: a) Error introduced by an adversary in the trusted time provided by
TIMEGUARD b) CPU utilization by active and passive modes with varying
request frequency

D. System Benchmarks

Having established the responsiveness and accuracy of
TIMEGUARD’s two modes, we evaluate its impact on the

Fig. 11: Sysbench benchmark overheads for active (left) and passive mode
(right) APIs with different timestamp request rates from the clients

whole system. Figure 11 shows the overhead of TIME-
GUARD’s both modes using Sysbench test suite as our bench-
marking tool. We see that in active mode TIMEGUARD incurs
very low overhead, the maximum CPU utilization is 1.2%
with 1000 watchdog inspections (secure interrupts) per second.
Interestingly, memory and thread fairness benchmarks show a
negative overhead i.e. an improvement in performance when
secure interrupt frequency increases to 100 and above. On each
secure interrupt, the data and code caches are cleared along
with the TLB caches. At 100 (1000) secure interrupts per sec-
ond, the caches are cleared once (10 times) every scheduling
period, and the memory and thread fairness improves. The
fileio results do not show an established pattern because we
use network based filesy-stem and network latencies skew
the results based on network conditions. On the other hand,
passive mode incurs high overhead and equally impact CPU,
memory and thread fairness performance with frequent timing
requests.

Figure 10b contrasts the CPU overhead between active and
passive modes across varying client numbers and timestamp-
ing frequencies. In passive mode, the overhead escalates with
an increase in clients utilizing the API, a consequence of
the heightened frequency of timestamp requests, which, as
previously observed, increases the overhead. Thus, passive
mode is best suited for applications requiring infrequent,
precise timestamps, such as online legal contracts and banking
transactions. Conversely, the overhead in active mode remains
constant, predominantly due to TIMEGUARD’s watchdog,
whose inspections occur at a steady rate, unaffected by the
volume of timestamp requests. This consistency, given the
negligible cost per timestamp (refer to Figure 9b), makes active
mode ideal for applications, such as credential verification and
task scheduling, needing frequent but less precise timestamps.

E. Sensor Fusion with TIMEGUARD

Having validated our design for trusted timing services,
we revisit our deep learning based sensor fusion case study
presented in section II. Figure 12 shows the sensor fusion

11

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

2500 10000 17500
Time Delay (ms)

50
90

70
Ac

cu
ra

cy
Incremental Delay
TimeGuard

Fig. 12: Deep Learning performance using trusted time provided by TIME-
GUARD

Attack TimeSeal TIMEGUARD
(Active)

TIMEGUARD
(Passive)

Scheduling Attack Yes | ≥ 42 No | 0 No | 0
Delay Attack Yes | ≥ 163 Yes | ≤11.56 No | 0
Packet Forging Attack No | 0 Yes | ≤11.56 No | 0

TABLE III: Susceptibility of different trusted timing services against timing
attacks. Each cell is formatted as {susceptibility | time error (ms) }, where
susceptibility indicates if the service will degrade under this attack while time
error is the average time error observed during the attack.

algorithm’s performance in presence of a stealthy adversary
but using trusted time provided by TIMEGUARD. It’s using
the active mode (with m = 2) because sensor fusion does
not demand accuracy as high as provided by the passive
mode. TIMEGUARD’s flexible design means, it can opt for
active mode timestamping which incurs lower overhead while
providing time accuracy sufficient for optimal sensor fusion
performance.

F. Comparison with TimeSeal
We compare TIMEGUARD with another trusted timing

service TimeSeal [8] that provides high-resolution trusted
timing service to applications inside Intel SGX. For our
comparison, we implement TimeSeal with ARM Trustzone by
emulating platform service enclave’s (PSE) trusted clock using
Trustzone’s secure timer. And the time is transferred from
the trusted clock to the user application via domain shared
memory instead of inter-process communication (IPC) which
was used by original Timeseal implementation with Intel SGX.

Table III shows three categories of time attacks. Timeseal’s
performance is affected by scheduling and delay attacks with
an error greater than 42ms and 163ms respectively. On the
other hand, TIMEGUARD’s passive mode is resistant to all
three attacks while in active mode it may experience delay
or packet forging attacks by a stealthy adversary. However,
TIMEGUARD watchdog ensures that this error is bounded to a
maximum value of 11.56ms, with watchdog implementing pol-
icy C with n = 10. To conclude, TIMEGUARD demonstrates
high degree of robustness against a privileged attacker and
provides high accuracy trusted time as compared to TimeSeal.

An important measure of a system’s security is its TCB
size. Table IV shows that TimeSeal has a small TCB like
TIMEGUARD, but its size increases linearly with increase in
number of applications opting to use them. On the contrary,
TIMEGUARD’s TCB remains fixed irrespective of the number
of events being timestamped or applications using it.

VII. RELATED WORK

Trusted Timing Solutions. TrustedClock [25] and Au-
rora [26] present secure clock designs that use system man-
agement interrupt (SMI) but rely on a kernel daemon to trigger

System LoC
(1 App)

LoC
(n Apps)

Existing TEE (e.g. ARM TZ) x n ∗ x
TimeSeal 250 n ∗ 250
TimeGaurd 150 150

TABLE IV: Trusted computing base comparison (approximate number of
Lines of Code (LoC).)

SMI which can be arbitrarily delayed by a compromised OS.
In addition to being vulnerable, it is specific to Intel SGX and
intended for servers and cloud environments. Timeseal [8] and
T3E [27] present an improved design of a secure timestamping
service using Intel SGX, however, they only provide trusted
time inside the TEE which limits their benefits to trusted world
and increase the TCB. Further, T3E [27] does not protect
against delay attacks by the privileged adversaries. Further,
platforms such as Android do not give direct TEE access to
developers who may need trusted time. Our design provides
a flexible trusted timing service that provides secure time to
applications outside TEE.

Realtime Kernel Protection. Samsung Knox [17] – a real-
time kernel protection mechanism – de-privileges the untrusted
OS and prevent it from executing privileged instructions. How-
ever, timing attacks are not complex; they can be as simple
as delaying time requests [8]. SATIN [18] is another work,
that aims to detect the presence of adversary through changes
made to the kernel. However, such an inspection may not be
sufficient to prevent timing attacks. A privileged adversary can
hide inside a device driver and launch timing attacks without
modifying the kernel or its data. Similar attack vector could
also be used against SPROBES [28] and SKEE [29], integrity
protection solutions that aim at protect kernel integrity by
monitoring each page table operation. Our design defends
against all timing attacks, especially delay attacks, and it can
be implemented alongside these holistic solutions to harden
them against timing attacks.

Secure Communication Channels between TEE and
User Programs. TrustICT [30] establishes a secure communi-
cation channel between the applications in normal world and
the TEE, by interposing context switches between the user
programs and the untrusted kernel. SeCRet [31] establishes
such a channel using expensive cryptographic operations and
inspecting page table operations. These solutions may be
used to transfer trusted time from the secure world to user
applications. While these solutions do protect the integrity of
timing information they do not prevent delay attacks.

VIII. CONCLUSION

TIMEGUARD provides trusted time to applications using
secure primitives of the modern TEEs. Our design enables
an adjustable trade-off between accuracy of the trusted time
and the system overhead. Some future directions to consider
are TIMEGUARD integration with kernel integrity protection
solutions such as Knox [17] and SATIN [18], and do security
analysis under double page mapping attacks, and enabling
multitenancy with a low overhead and high accuracy.

12

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

ACKNOWLEDGEMENTS

We thank the anonymous RTAS reviewers for their insight-
ful comments and feedback. This research is supported by NSF
grants 2237485 and 2230143.

REFERENCES

[1] S. Hamilton, D. Sengupta, and R. Gupta, “Introducing automatic time
stamping (ats) with a reference implementation in swift,” in 2018 IEEE
21st International Symposium on Real-Time Distributed Computing
(ISORC). IEEE, 2018, pp. 138–141.

[2] S. Li, X. Fan, Y. Zhang, W. Trappe, J. Lindqvist, and R. E. Howard,
“Auto++ detecting cars using embedded microphones in real-time,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 3, pp. 1–20, 2017.

[3] S. Mirzamohammadi, Y. M. Liu, T. A. Huang, A. A. Sani, S. Agarwal,
and S. E. S. Kim, “Tabellion: Secure legal contracts on mobile devices,”
in Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 220–233. [Online].
Available: https://doi.org/10.1145/3386901.3389027

[4] S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava, “Time awareness
in deep learning-based multimodal fusion across smartphone platforms,”
in 2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI), 2020, pp. 149–156.

[5] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic,
“Security analysis of Camera-LiDAR fusion against Black-Box attacks
on autonomous vehicles,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 1903–1920. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/hallyburton

[6] F. Alder, G. Scopelliti, J. Van Bulck, and J. T. Mühlberg, “About time:
On the challenges of temporal guarantees in untrusted environments,”
in Proceedings of the 6th Workshop on System Software for Trusted
Execution, ser. SysTEX ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 27–33. [Online]. Available:
https://doi.org/10.1145/3578359.3593038

[7] J. Selvi, “Breaking ssl using time synchronisation attacks,” in DEF CON
Hacking Conference, 2015.

[8] F. M. Anwar, L. Garcia, X. Han, and M. Srivastava, “Securing time
in untrusted operating systems with timeseal,” in 2019 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2019, pp. 80–92.

[9] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon et al., “ftpm: A software-only
implementation of a tpm chip.” in USENIX Security Symposium, vol. 16,
2016, pp. 841–856.

[10] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1416–1432.

[11] ARM. (2022, June) What is the generic timer? [On-
line]. Available: https://developer.arm.com/documentation/102379/0000/
What-is-the-Generic-Timer-

[12] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments.” in
NDSS, 2017.

[13] ARM. (2022, June) Armv8 architecture registers,
cntpct el0. [Online]. Available: https://developer.
arm.com/documentation/ddi0595/2021-06/AArch64-Registers/
CNTPCT-EL0--Counter-timer-Physical-Count-register

[14] ——. (2022, June) System counter. [Online]. Available: https:
//developer.arm.com/documentation/102379/0100/System-Counter

[15] U. B. EECS. (2022, June) Risc-v - instruction set
manual. [Online]. Available: https://riscv.org/wp-content/uploads/2017/
05/riscv-privileged-v1.10.pdf

[16] S. Sandha and T. Xing. (2019, June) Github: Cmactivities dataset.
[Online]. Available: https://github.com/nesl/CMActivities-DataSet

[17] U. Kanonov and A. Wool, “Secure containers in android: the samsung
knox case study,” in Proceedings of the 6th Workshop on Security and
Privacy in Smartphones and Mobile Devices, 2016, pp. 3–12.

[18] S. Wan, J. Sun, K. Sun, N. Zhang, and Q. Li, “Satin: A secure and
trustworthy asynchronous introspection on multi-core arm processors,”
in 2019 49th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). IEEE, 2019, pp. 289–301.

[19] ARM. (2023, October) Arm security technology building a secure
system using trustzone technology. [Online]. Available: https://
developer.arm.com/documentation/PRD29-GENC-009492/latest/

[20] K. Enclave. (2023, October) Keystone: An open framework for
architecting trusted execution environments. [Online]. Available:
https://keystone-enclave.org/

[21] ARM. (2022, June) Armv8 architecture registers,
cntkctl el1. [Online]. Available: https://developer.
arm.com/documentation/ddi0595/2020-12/AArch64-Registers/
CNTKCTL-EL1--Counter-timer-Kernel-Control-register

[22] ——. (2022, June) Region security permissions
using trustzone address space controller. [On-
line]. Available: https://developer.arm.com/documentation/ddi0431/b/
functional-description/functional-operation/region-security-permissions

[23] NXP. (2023, October) Sabre board for smart
devices based on the i.mx 6quad applications
processors. [Online]. Available: https://www.nxp.com/design/
development-boards/i-mx-evaluation-and-development-boards/
sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:
RD-IMX6Q-SABRE

[24] ARM. (2023, October) Timers, security extensions
implemented, virtualization extensions not implemented.
[Online]. Available: https://developer.arm.com/documentation/
ddi0406/c/System-Level-Architecture/The-Generic-Timer/
About-the-Generic-Timer/Timers?lang=en

[25] H. Liang and M. Li, “Bring the missing jigsaw back: Trustedclock
for sgx enclaves,” in Proceedings of the 11th European Workshop on
Systems Security, 2018, pp. 1–6.

[26] H. Liang, M. Li, Q. Zhang, Y. Yu, L. Jiang, and Y. Chen, “Aurora:
Providing trusted system services for enclaves on an untrusted system,”
arXiv preprint arXiv:1802.03530, 2018.

[27] G. M. Hamidy, P. Philippaerts, and W. Joosen, “T3e: A practical solution
to trusted time in secure enclaves,” in International Conference on
Network and System Security. Springer, 2023, pp. 305–326.

[28] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” arXiv preprint arXiv:1410.7747,
2014.

[29] A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and
P. Ning, “Skee: A lightweight secure kernel-level execution environment
for arm.” in NDSS, vol. 16, 2016, pp. 21–24.

[30] J. Wang, Y. Wang, L. Lei, K. Sun, J. Jing, and Q. Zhou, TrustICT:
An Efficient Trusted Interaction Interface between Isolated Execution
Domains on ARM Multi-Core Processors. New York, NY, USA:
Association for Computing Machinery, 2020, p. 271–284. [Online].
Available: https://doi.org/10.1145/3384419.3430718

[31] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment.” in NDSS, 2015, pp. 1–15.

13

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Application

App
Page Table

OS

MMU

OS
Page Table

Translation
Table

Memory

1

1

2

2

3

3So
C

Ke
rn

el
Us

er
sp

ac
e

(a)

Application

App
Page Table

OS

MMU

OS
Page Table

Translation
Table

Memory

1

1

2

23

(b)

Fig. 13: Address Space Translation on a typical system: a) to run an
application, 1⃝ the OS saves its own page table, 2⃝ loads the pointer to the
application’s page table, 3⃝ application now runs in less privileged mode, and
MMU performs address translation without any interaction with the OS; b)
the reverse happens when application performs a system call or OS performs
a context switch.

APPENDIX

Figure 13 shows the memory access mechanism in a typical
system. When an application is launched, OS programs the
Memory Management Unit (MMU) with the corresponding
application’s page table pointer, and hands over CPU execution
to the application. The application’s accesses to the memory
are performed by the MMU without any interaction with
the OS, which continues until the application requires a new
memory allocation or when the OS loads its own page table
to the MMU and performs switch to the kernel mode. Other
situations when the OS will be alerted of the access to a
particular memory location is when that memory location does
not belong to the user application.

14

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 15:02:55 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

