
HAEST: Harvesting Ambient Events to
Synchronize Time across heterogeneous IoT devices

Adeel Nasrullah
UMass Amherst

anasrullah@umass.edu

Fatima M Anwar
UMass Amherst

fanwar@umass.edu

Abstract—Synchronizing clocks is a resource-intensive and a
resource-rigid task; this makes it challenging to align time across
resource-constrained and heterogeneous IoT devices. Just as low-
power IoT devices harvest energy from the environment, we pro-
pose to scavenge timing information from environmental events
to conserve device power and bandwidth. We convert ambient
events in an environment – sensed by various sensing modalities –
into synchronization signals. Our approach, HAEST, leverages
prevalent sensors on commodity platforms such as accelerom-
eter, microphone, and optical sensors to timestamp commonly
observed events. We present a light-weight and robust approach
to detect events across different types of sensors and devices.
This creates ample opportunities to align time and simultaneously
avoid the clocks to drift apart. Through evaluation on a hardware
testbed in a smart home and a wireless body area network,
we show that HAEST achieves clock accuracy as low as sub-
milliseconds with no cost for IoT devices. Importantly, our use
of off-the-shelf IoT platforms in our evaluations, establishes the
universality and applicability of our approach to a variety of
smart spaces with heterogeneous devices.

Index Terms—Time synchronization, Sensing modalities, Am-
bient events

I. INTRODUCTION

Aligning time accurately across distributed and heteroge-
neous devices in a network without additional communication
cost on already resource-constrained devices is a critical area
of research. Fundamental to most traditional synchronization
protocols is to communicate timing packets over homogeneous
networks [1]–[4]. We argue that networks are becoming in-
creasingly heterogeneous i.e. distributed devices with different
radios and sensing capabilities serve a variety of emerging IoT
applications [5]–[9]. Additionally, the energy budgets for these
networks are shrinking, which makes traditional protocols ei-
ther incapable, inaccurate or costly for most applications. Our
approach, HAEST, breaks away from these traditional trade-
offs among performance, universality, and cost, and presents a
time-sync service weaved into the diverse sensing infrastruc-
ture that relies on ambient sensing events as timing signals.
We argue that a scheme synchronizing heterogeneous sensor
networks would decrease system complexity [10], increase
performance [11] and security [12] in edge deployments.

Synchronization is a fundamental service for emerging
IoT applications ranging from safety-critical national, in-
dustrial, and medical [8] infrastructure to human-in-the-loop
systems [13]. Interestingly, these disparate applications have
diverse timing requirements as shown in the table I. For

Application Data Rates (Hz)
Required Time-Sync

Accuracy (ms)
Solution Deployed

Wireless Earphones [17] N.A. 30-0.5
Custom (over
UDP/ICMP)

Visual Inertial
Odometery [18]

10-100 10 N.A.

Fall Detection
& Localization [19]

1000 1 GPS

Human Activity
Recognition [20]

50 100 N.A.

Autonomous Vehicle
sensor system [6]

30-44100 ∼ 20
Sensor Cross-

Correlation

Muscle Fatigue
Estimation [8]

500 ∼ 10
Serial Comm-

unication (wired)

Body Area Network
(Parkinson’s Disease

Monitoring) [21], [22]
100 ∼ 10 FTSP

Tab. I: Time Critical Applications

instance, driver assistance systems, enabled by the sensor
data from multiple sub-systems, need to synchronize up to
10s of milliseconds [6], while sensor networks for occu-
pancy and elderly fall detection need their time aligned up
to a few milliseconds [14], and sensor networks for natural
hazard monitoring may need sub-microseconds accuracy [9].
However, achieving these timing requirements in diverse and
heterogeneous networks is challenging due to several reasons.
First, non-deterministic timing and networking stacks intro-
duce uncertainties in propagation delay measurements by the
IoT devices [15]. These uncertainties result from delays caused
by channel contention, asynchronous queues, and scheduling
on multi-tasking devices. Second, recent sensor network de-
ployments (indoors and outdoors) are increasingly adopting a
mix of networking technologies [16] such as BLE, Zigbee, and
WiFi. Devices with incompatible radios can only share time
through a third server (or a gateway device) which comes at the
cost of extra hops with radio dependent delays adding further
clock errors. Finally, most devices are resource-constrained
and cannot communicate frequently for accurate clocks.

The goal of this work is to break away from the estab-
lished trade-offs in clock synchronization literature. Tradi-
tional packet exchange based clock alignment methods are
either universal but with low clock accuracy (Network Time
Protocol – NTP [1]), or provide high clock precision but with
customized hardware or software solutions (Precision Time
Protocol – PTP [2], GPS, Cross Technology Synchronization
– CROCS [23], C-Sync [24]). Other methods that rely on uni-
versal sensing signals such as electromagnetic radiation from
power lines provide a range of clock accuracy. However, they
too require either custom hardware (Syntonistor [25], Electric
Network Frequency – ENF [26]) or special conditions like
human contact (TouchSync [27]), making these approaches
only suitable for a limited class of devices. Our observation is

265

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00029

2
0

2
4

 I
E

E
E

 3
0

t
h

 R
e

a
l-

T
im

e
 a

n
d

 E
m

b
e

d
d

e
d

 T
e

c
h

n
o

lo
g

y
 a

n
d

 A
p

p
li

c
a

t
io

n
s
 S

y
m

p
o

s
iu

m
 (

R
T

A
S

)
|

 9
7

9
-8

-3
5

0
3

-5
8

4
1

-4
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
R

T
A

S
6

1
0

2
5

.2
0

2
4

.0
0

0
2

9

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

that these methods provide an accurate clock by compromising
either universality, applicability to heterogeneous devices, or
hardware/network cost. In contrast, our proposed approach
HAEST provides a universal timing service to heterogeneous
IoT devices that achieve clock accuracy up to less than a
millisecond without additional hardware, computational, or
network cost for the IoT devices.

HAEST achieves time synchronization by harvesting ambi-
ent events captured by sensors on IoT devices, disentangling
them from devices’ networking capabilities. HAEST is a
receiver (RX) to receiver (RX) synchronization approach [4],
where two devices observe and timestamp a common am-
bient event using the same or different sensing modalities.
Figure 1 shows a variety of dominant sensors in a smart
space such as microphones, optical and Inertial Measurement
Units (IMU). These sensors observe many ambient events.
For example, opening and closing a door will produce sound,
vibrations, and cause room luminosity levels to change, and
their corresponding sensor types will capture and timestamp
these events simultaneously. HAEST uses a gateway device to
correlate the timestamps corresponding to the common events
for estimating clock offsets and relative frequency drifts for
the sensors involved. It moves the computational cost of time
synchronization from the resource-limited IoT devices to the
gateway. It also eliminates the need for dedicated message
passing among devices. We argue that, like our example in
Figure 1, most indoor and outdoor smart spaces deploy a range
of sensors for monitoring activities that generate different
types of events, thereby establishing the universality of event
sensing and applicability of HAEST to many applications.

HAEST relies on the detection and timestamping of com-
mon events in the IoT sensor data, putting event detection at
the heart of its design. Despite extensive research literature,
the existing event detection solutions do not work well with
HAEST. For instance, many event detection approaches focus
on a fixed application [19], [28] and do not extend to other
sensing modalities. In addition, generalized event detection
approaches [29]–[33] often require manual calibration or pa-
rameter estimation for each new instance of a sensor which
is impractical for HAEST’s at scale adoption. Complex event
detection [34], [35] approaches can be adopted across different
sensors on a scale, however, they demand GPU resource that
is often unavailable at a gateway device. We aim to detect a
variety of events with various sensor types using off-the-shelf
IoT and gateway devices with minimal calibration cost.

To achieve universality and limited cost without compro-
mising accuracy in HAEST design, we address the following
challenges: 1) sensing event detection is a computationally
intensive task, for example, Cadence [36], an event detection
approach specifically designed for IoT streaming applications,
has an inference throughput of 33 samples/second on a GPU-
equipped machine. Still, it falls short of handling data from
sensors operating at higher sampling rates (e.g., IMU and
audio). HAEST presents unsupervised learning based robust
event detection mechanism and optimization approaches to
run a high-throughput inference on gateway devices, which

Microphone

Optical
Sensor

IMU

Microphone

IMU

Door
Opened

Door
Closed

tA
M

tA
I

tA
O tB

O

tB
I

tB
M

Optical
Sensor

Fig. 1: HAEST overview: Co-located sensing devices observe numerous ambient events
in common that can be leveraged to align time across them. On left, human activity
is detected by three prominent sensors i.e. audio, inertial and optical sensors. On right,
events appear in the data and their timestamp is recorded by these sensors simultaneously.

lack GPUs and accelerators. To achieve this goal, we leverage
integer-only computations and a dual-stage sensor data encod-
ing scheme (part-shared and part-specialized) and significantly
improve inference speeds. 2) Our event detection algorithm,
like any other deep learning algorithm, is error prone and may
detect false or delayed true events. These delays are a result
of different sensors that observe the same event but are not
equidistant from the event source and capture the event several
milliseconds apart. Our proposed clock parameter estimation
approach mitigates event detection delays and filter out false
events. We note that the timestamps of the events experiencing
identical delays tend to cluster around a fixed value. Hence,
the drift measured using timestamps of this cluster represents
actual clock drift, since fixed delays do not impact the drift.
Our approach obtains clock drift for each cluster separately
and aggregates it to obtain the final drift. Our final challenge
is that all devices in a sensor network do not observe the
same events and lose opportunities to synchronize with each
other. To achieve network-wide synchronization, we propose a
clustering mechanism and a pair-wise synchronization scheme
– based on devices’ sensing and deployment properties – to
align devices within and across clusters.

Contributions of the paper. Our goal is to blend time syn-

chronization service into the sensing infrastructure, enabling

accurate clocks for various sensor platforms with diverse and

disparate capabilities at no additional cost for the IoT devices.

Our main contributions are as follows:

1. We propose a robust event detection scheme based on
auto-encoders with quantized weights to reduce cost. We use
a common auto-encoder for event detection across different
sensors for cost reasons, but to preserve event detection per-
formance, we introduce a sensor-specific layer to the common
auto-encoder, and propose a cascaded event detection approach
for sensors operating at high sampling rates of several kHz.

2. We conduct a comprehensive study of timing charac-
teristics on heterogeneous sensing platforms with the most
prevalent sensing modalities. Our key findings are: (i) A sensor
with lower sampling frequency dominates the pairwise clock
error. For example a 50Hz accelerometer paired with a 200Hz
one bounds the error in order of milliseconds compared to
sub-millisecond. (ii) Different kinds of sensors can observe a
common event but are restricted by large propagation delays
(iii) Clock accuracy depends upon the number of mutually
observable events. For example, microphones on two devices

266

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

would align their clocks well if the number of common events
per minute is 5 instead of just one. As such, (iv) we present a
quantification of the effect of sensor characteristics and event
frequency on clocks, and propose a clock parameter estimation
technique that aids in network-wide synchronization.

3. Our clock verification mechanism for a smart home and
body area network deployment – consisting of heterogeneous
platforms with different sensing modalities – shows that
HAEST achieves an average error of a few milliseconds for a
device pair under different sensing and environmental condi-
tions. We also see that HAEST can achieve a sub-millisecond
error for device pairs with better timestamping capabilities.
The error increases to 10’s of milliseconds for network-wide
synchronizations. Under similar conditions, HAEST achieves
as much as 5x smaller clock error compared to NTP while
saving up to 36% in power consumption.

II. LITERATURE SURVEY

Event Detection. Event detection, also known as time
series segmentation, is integral to most distributed sensing
applications [6], [8], [18]–[20], [22], and it is achieved by
either i) each sensor in the network or ii) a gateway receiving
data from a multitude of sensors [37]. The former is often
application and sensor specific, e.g., natural hazard detection
using geophones [9], eating detection with IMU [5], footstep
detection from audio data [38]. However, in a heterogeneous
sensor network, data is typically offloaded to a gateway
device, for multi-sensor event detection (and classification)
and many sensors lack resources for in-situ processing. This
event detection is however application specific as opposed
to HAEST which requires sensor and platform agnostic ap-
proach. SenseHAR [28] presents one such solution, however,
it only works for data originating from a single platform. In
contrast, HAEST detects events separately in each sensor’s
data and correlate them for time synchronization.

Generalized event detection methods can be broadly divided
into two categories: i) probability distribution estimation [32],
[33], [39] and ii) density ratio estimation [40]–[43]. However,
these methods do not scale well as they either rely on i) man-
ually calibrated parameters [32], [33], [39] or ii) simple sta-
tistical measures [42], [43] like mean, variance and spectrum
which may not be the best predictors of events across all sensor
types. Our work extends Lee et al.’s [44] non-parameterized
event detection approach to achieve a lightweight and scalable
event detection on edge gateways.

Packet-Exchange based Synchronization. Communication
dependent time synchronization solutions for sensing appli-
cations are either resource-intensive in terms of high power
consumption and bandwidth utilization (GPS, NTP, and PTP)
or are resource-rigid, i.e., rely on dedicated infrastructure
or specialized hardware ([7], [45]–[48]). C-sync [24], a
recent work, provides resource-efficient time synchronization.
However, it, too, is tied to a homogeneous networking stack.
HAEST, in contrast, is designed for heterogeneous platforms
and caters to the timing needs of a wide variety of devices
without demanding resources from them. Finally, Crocs [23]

leverages cross-technology communication [49], [50] to syn-
chronize clocks between WiFi and ZigBee devices. However,
in contrast to HAEST, it is tied to these two technologies and
does not extend to other prevalent technologies such as BLE.

Sensing based Synchronization. There is an extensive
literature exploiting sensing for clock synchronization. Elec-
tromegnetic Fields (EMF) radiated by power lines have been
used for time sycnhronization across several studies [25]–
[27], [51], [52]. However, these methods either require special
hardware [25], [26], [51], [52] or special conditions [27]. Li
[53] et al. explores optical sensing for time sync and Fridman
et al. [6] uses cross-correlation to align accelerometer and
optical flow data from an autonomous vehicle. However, the
former is limited to a single sensor modality and the later
is intended for vehicular sensor networks. HAEST can use
each of these sensing modalities while exploring numerous
cross-modalities to design universal time synchronization for
heterogeneous off-the-shelf IoT devices.

III. DESIGN OVERVIEW

HAEST timestamps sensing signals originating from am-
bient events as opposed to periodic radio communication by
RBS [4], the other RX-RX time-sync approach. These signals
are offloaded to a gateway that computes relative clock offset
and drift across all devices. Thus, it allows heterogeneous
sensing devices – without the same radio technology – to
participate in time synchronization.

We argue that harvesting ambient events (reference signals)
from the environment decouples synchronization from a par-
ticular sensing and radio technology. In addition, removing the
need for packet exchange between devices, not only enables
devices with different networking stacks to synchronize mutu-
ally through the gateway, but also limit extra communication
costs at the IoT devices. Finally, HAEST avoids additional
energy and computational costs for IoT devices by moving
time synchronization calculations to the gateway server.

Figure 2 shows the HAEST design, which consists of two
phases: i) the bootstrapping and ii) the synchronization phase.
While the former is responsible for setting up event detection
encoders for a variety of sensors and finding the optimal device
pairs for network-wide sync, the latter detects mutual events
and estimate clock parameters for all pairs in the network.

Bootstrapping phase. In this phase, we first build a graph
of sensor network, where, each node is a sensing device, and
each edge represents a common event detected by a device
pair. We then collect data from the graph network and use
it to learn sensor data encodings by training autoencoders
for event detection. The sensor encodings produce mutual
event count i.e. the number of events observed by every pair,
which is used to prune the original graph by selecting the
appropriate synchronization pairs (sync-pairs) based on device
pair characteristics (sensor types and sampling rates) and the
frequency of common events. Sync-pairs are subsets of sensing
pairs in the original graph and selected to ensure all nodes
remain connected to each other via one or more hops. They

267

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Base
Encoder
Model

Base
Encoder
Model

Base
Encoder
Model

Base
Encoder
Model

Base
Encoder
Model

Sensor Network:
Sync PairsSensor  

Network

Train  
Sensor  

EncodersData
Collection

Base 
Encoder 
Model

Inference

Mutual
Event Count

Data
Streaming

Sensor 
Encoder 
Inference

Clock 
Parameter 
Estimation

Bo
ot

st
ra

pp
in

g
Ph

as
e

Sy
nc

hr
on

iza
tio

n
 P

ha
se

Section V:  
Network Sync

Section III: Event Detection

Section IV:  
Clock Pair Sync

IoT Devices Gateway

Detected 
Mutual Events

Fig. 2: HAEST Design Phases and Blocks

allow efficient network-wide time-sync rather than the brute-
force method, which synchronizes along every graph edge.

Synchronization phase succeeds bootstrapping and uses
autoencoders – trained during the previous phase – to de-
tect common events between the sync-pairs and align their
clocks using the detected mutual events. In doing so, HAEST
achieves network-wide time-sync across all pairs through the
network-effect i.e. devices are transitively aligned with other
devices in the network over one or more hops.

Note that data collection occurs only at IoT devices; the rest
of the steps in both phases are managed by the gateway. In
both phases, HAEST overcomes challenges of heterogeneity,
delays, detection errors, and learning cost. As such, Section IV
describes our event detection approach, while Section V covers
our clock parameter estimation approach guided by a study
on sensing clock characteristics for a device pair. Finally,
Section V-C introduces techniques to extend our device pair
time-sync scheme to a heterogeneous sensor network.

IV. EVENT DETECTION

As described above, event detection is fundamental to both
the bootstrapping and synchronization phases. It refers to the
identification of an event’s starting (and end) points in time
series sensor data, and it is a well-studied problem [34]–[36],
[44]. However, most of these approaches add computational
complexity for high accuracy. It is at odds with our objective
of parallel event detection for multiple sensor streams without
exhausting the gateway device’s resources. In a typical deploy-
ment, many devices with different sensors connect to a single
gateway which detects events for the connected sensors.

Addressing the constraints of limited resources and sensing
heterogeneity, HAEST event detection design at the gateway
has three goals: i) a light weight design that can process
data received from multiple devices using the limited compu-
tational resources; ii) universality i.e. the same event detection
approach works for different sensor types, as resources of
a typical gateway (e.g., Raspberry Pi4) may be insufficient
to run a dedicated event detection for each sensor; and iii)
scalability i.e. event detection without manual calibration for
heterogeneous deployments, which may have the same types
of sensors but from separate manufacturers with different
characteristics (e.g., sensitivity and resolutions). Below, we

present HAEST event detection techniques along with the
challenges and solutions to meet its design goals.

A. Time Series Segmentation

Our event detection approach relies on the observation that
the data points of a given sensor have a specific underlying
distribution [44], which changes upon an event’s occurrence.
Given this observation, we expect consecutive sensor data
points to have a smaller distance between them if recorded
during an event or at rest since they belong to the same
distribution. In contrast, the distance between the data captured
at rest and the data points recorded during an event will be
larger. We use this observation to predict events in the sensor
data. However, raw sensor data often contains ambient noise
(e.g., a microphone exposed to TV sound), which impacts the
distance measurements. We use autoencoders to capture the
underlying sensor data distribution. Autoencoders are neural
networks that transform the raw data into an intermediate
representation, called encodings, and then reconstruct the
original data from these encodings. They have demonstrated
the ability to capture distribution-specific characteristics of
sensor data [54]. We obtain the sensor data encodings using
auto-encoders and compute the distance between consecutive
sensor data points. The peaks in this distance score indicate
the occurrence of the ambient events.

For our design, we use an autoencoder composed of two
fully connected neural networks: i) Encoder Enc that maps
the raw sensor data X to the encodings f = Enc(X) and ii)
Decoder Dec that converts the encodings back to the raw data
X̂ = Dec(f). To train the autoencoder with sensor data X of
length T and dimensions Nc, we take sensor data segments
of length Nw such that for timestep t the segment starts at
t − Nw + 1. It gives us a total of T − Nw + 1 segments,
starting at t ∈ {0, 1, 2, ..., T −Wn + 1}, where each segment
consists of a matrix st ∈ RNc×Nw . We collapse this matrix
into a single column vector st ∈ RNcNw×1, which will be
the input to our autoencoder and its expected output. After
the autoencoder is trained, we obtain the encodings for each
segment as ft = Enc(st), and compute the distance between

the consecutive segments as dt =
||ft−ft−1||2√
||ft||2∗||ft−1||2

. Here, dt

represents a distance score of the sensor data Xt at timestep
t. Finally, we find the timestamps corresponding to the local
maxima (detecting ambient event) in the distance sequence d.

We evaluate our event detection approach using two sen-
sor data sets, that capture various human activities (ambient
events), i) UCI [55]: 6 dimensional IMU data (accelerometer
and gyroscope) and ii) Dcase2016 [56]: audio data. Figure 3
shows the ROC curve for the two data sets1. The area
under the curve shows individual event detection accuracy
for Dcase2016 and UCI datasets, which is 0.77 and 0.53,
respectively. High false positive rate shows that events are
detected when there aren’t any, and not because of missing
true events. However, we argue that for HAEST, we are only

1Appendix A provides the details related to our experimental setup and
evaluation metrics, i.e., ROC

268

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Original Quantized
Area under

ROC
Inference speed
(samples/sec)

Area under
ROC

Inference speed
(samples/sec)

DCase2016
(Audio)

0.77 147 0.60 3600

UCI HAPT
(IMU)

0.53 147 0.55 3600

Tab. II: Event Detection Performance with Quantized Encoder on RPi4

interested in mutually observed events by two or more sensors,
and the probability of false positives for mutual event detection
is low. We use this intuition later to filter the false events.

B. Quantization

Our event detection approach can only process almost 147
time steps/second on a RPi4, a typical gateway device. This
speed is insufficient to process multiple sensing devices (op-
erating at 100s of Hz) connected to one gateway. We propose
a quantization approach to speed up event detection. As
integer computations are significantly faster than floating-point
computations on gateway devices lacking accelerator hardware
like GPUs (e.g., RPi4), we use 8-bit post-training quantization
of encoders Enc. Our quantization approach uses uniform
affine transformation that requires the calculation of scale
and zero point [57] (implemented by TensorFlow lite API). It
means successful post-training quantization has a prerequisite,
i.e., training data has a two-sided distribution. This property
is critical to preserve the encoder’s Enc event detection
performance because, if the input to the network has a one-
sided distribution (say (0.5, 1)), the model is still quantized
as if the distribution includes 0 (that is, (0, 1)). It leads to big
quantization steps and significant performance degradation.
With post-training quantization in mind, we normalize the
sensor data between (−1, 1) for autoencoder training.

We compare quantized encoder’s event detection perfor-
mance to the original for both datasets and show results in
Table II. We see more than 20× improvement in the encoder’s
inference speed upon quantization, thus satisfying our goal of
light-weight design. Note that there is no significant impact
on event detection performance for IMU data, but there is a
performance drop of 20% for audio data. As described earlier
in section IV-A, this high false detection will be mitigated
using our false event detection filter.

C. Sensor Specific Encoders

Our event detection approach requires a dedicated encoder
for each sensor connected to the gateway, but the resources
may be insufficient to meet this demand. For example, in a
scenario where RPi4 is the gateway device for 6 sensors, it
would need to run 6 encoders which will quickly overwhelm
its 4 CPU cores. To make our approach lightweight and

(a) Audio (b) IMU

Fig. 3: ROC curves for a) DCASE 2016 dataset b) UCI Human activity recognition
dataset.

Original Encb Encb + Encs

Area under
ROC

Area under
ROC

Area under
ROC

DCase2016
(Audio)

0.77 0.7 0.8

UCI HAPT
(IMU)

0.53 0.49 0.53

Tab. III: Event Detection performance using sensor-specific encoders

universal, we divide the event detection encoder Enc into
two parts. First is the base encoder Encb that is common to
all sensors, and second is a dedicated sensor-specific encoder
Encs for each sensor connected to the gateway.

We design Encs as a single-layer encoder that performs a
sensor-specific transform on encodings computed by the base
encoder. For sensor data X , its feature vector in the latent
space would now be f = Encs(Encb(X)). Having this in
place, the data from the sensors m are merged into a matrix
X = [X1, X2, ..., Xm] where Xi is the data vector of the i-th
sensing device. We obtain a feature matrix fb = Encb(X),
where fb = [fb1, fb2, ..., fbm]. Finally, the sensor specific
features f1, f2, ..., fm are obtained as fi = Encs(fbi).

In our design, the sensor-specific encoder Encs is only
9.1% of the base encoder Encb (see Appendix A). For our
earlier example, this approach only needs computations equiv-
alent to running two encoders for 10 sensors. Table III shows
event detection performance with sensor-specific encoders for
the IMU and Audio data sets. The base model trained on both
sensors’ data shows degraded performance. However, the ad-
dition of a sensor-specific encoder mitigates this performance
loss. Sensor-specific encoders enable different sensor types to
share the base encoder Encb, meeting our goal of universal

event detection approach.

D. Cascaded Detection

Despite being lightweight, our event detection approach can
only process a few thousand sensor data samples per second
(Table II). While it is sufficient for most commodity sensors
(IMU, optical sensors), it cannot process audio data often
sampled at high frequencies (typically 44.1 kHz). We design
a cascaded event detection approach for sensors operating at
high sampling rates. This approach consists of the following
steps: i) downsample the sensor data (down to 1-2kHz), ii)
perform event detection on this downsampled data, and iii)
if we detect an event during an interval, re-perform event
detection for this same interval using original data.

For a signal S = s0, s1, s2, ..., sN recorded over time
period T , Sd = s0, sc, s2c, s3c, ...sN/c is signal down-
sampled by a factor of c. Our cascade detection ap-
proach detects events on this signal Sd. Upon an event
detection at timestep kc, we obtain a segment W =
skc−w/2, skc−w/2+1, ..., skc, skc+1, ..., skc+w/2 from the orig-
inal signal S of the length w centered at kc. Event detection
using the segment W provides a more precise timestamp,
which would reduce errors in our estimation of the clock
parameters.

Figure 4a shows ROC results for event detection perfor-
mance on downsampled audio data (0.57) compared to the
original (0.77). We argue that detecting true events with
downsampled data is still effective.

269

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a) Event Detection Performance on Downsam-
pled Audio

(b) Propagation delay distribution for a pair of
audio sensors operating at 2kHz

Fig. 4: (a) ROC curve for event detection using downsampled audio data, (b) Distribution
of propagation delay observed by a sensor pair

S1

S2

SN

Sensor Data

Batched 
Inputs

Unified 
Encoder

Specialized 
Encoders

Quantized Models

Distance 
Calculation

Event

Detection

S1 Events
S2 Events

SN Events

 SN

 SN

Cascaded Inference
Fig. 5: HAEST Event Detection.

E. False Event Detection Filter

This filter empirically determines a rolling window of fixed
duration to identify and reject false mutual events. It counts
the number of detected mutual events; a single event within
the window is kept as a true event, while multiple detected
events in the window show the presence of false events and
lead to the dropping of all events in that window. While this
strategy eliminates false events, it can potentially also drop
the true coinciding mutual events. We cannot correlate these
events uniquely as the order of their arrival at the two sensors
is unknown. Thus we may lose synchronization opportunities,
however, coinciding events are likely to occur in a high event
rate environment, and we expect sensor pairs to get ample
synchronization opportunities despite our filter.

F. Error Reduction in Event Detection

HAEST event detection is intended to identify synchroniza-
tion signals in the sensor data. And it is important to identify
an accurate timestamp for detected events. However, the noise
in distance scores causes time errors in event detection. The
peaks in distance scores that indicate the location of a common
event do not align between two sensors, which adds to the time
error. Figure 6 shows HAEST distance scores for common
audio events captured by two sensors in its second column. We
see a large time error (in the order of hundreds of timesteps),
and the error is inconsistent across events. To minimize this

Fig. 6: HAEST event detection using audio data from two different sensors. The events
detected using raw scores (section IV) exhibit large errors. The post-processing event
detection using final scores exhibits negligible error.

time error for better clock offset and drift estimation, we
propose a two-step signal processing technique:
Low Pass Filter: Our first step removes noise from the
distance scores, where we chose Savitzky-Golay2 [58], as a
low-pass filter with the following properties important to the
next step: i) it fits a polynomial curve to a local segment
of the signal which removes the noise but maintains the
signal’s global structure, and ii) when used with higher order
polynomial, it preserves the height and width of signal peaks.
First Order Derivatives: We observe that the increase in the
magnitude of the distance score preceding local maxima for
a given event is more consistent between devices than the
local maxima itself. We capture this increase using a first-
order derivative of the low-pass filtered distance scores (shown
as final scores in the last column of Figure 6), and treat the
corresponding maxima as our detected event. Properties of the
Savitzky-Golay filter, mentioned earlier, ensure that changes
in distance scores (signal peaks) are preserved during noise
removal and captured accurately by the derivative.

Applying our time error reduction technique to the audio
events in Figure 6 shows negligible time error between the
events in the third column. We will use these precise event
timestamps for clock parameter estimation.

G. Putting everything together

Figure 5 shows the complete HAEST event detection
design. Data from all sensing devices are batched together for
inference with the base encoder, followed by sensor-specific
encoder inference for each sensor data. Note that all encoders
are quantized, and sensor data with higher sampling rates
undergo cascaded inference. Using the features computed by
the encoders, we compute distance scores for each sensor data
and find local maxima, i.e., the detected events.

HAEST event detection, relying on unsupervised training
of sensor encoders shared between various sensors, requires
negligible manual calibration, and it is scalable across de-
ployments. However, the window size Nw of the input data
to the encoder needs one time calibration. It is a function
of the sampling rate and sensor type, that is, Nw = 400 at
50Hz for IMU while Nw = 2400 for audio data at 44.1kHz
and 2.2kHz. For each new sensor type and sampling rate
combination when deployed for the first time, Nw will be
determined empirically. Since there are finite sensor types and
sampling rate combinations, the need to determine Nw will
decrease as the number of deployments increase.

V. CLOCK SYNCHRONIZATION

The clock parameters (offset and drift) of a device pair are
estimated using common events detected by HAEST event
detection. Consider two devices A and B detect a common
event and obtain timestamps tA and tB for this event, using
their local clocks. The offset between the two devices will be
offset = tA − tB and their relative drift is the rate at which
the offset changes

d(offset)
dt . However, the two sensors may

2We use Scipy’s implementation of this filter. We use a seventh-order
polynomial with a window size of 101 data-points.

270

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

detect a common event with a delay tP in which case, the
offset equation becomes offset + tP = tA − tB . We name
tP as propagation delay. For the correct clock parameter es-
timation based on common events, it is crucial to mitigate the
propagation delay. This section presents our clock parameter
estimation scheme, for a device pair, mitigating propagation
delay. We follow it by an in-depth study evaluating our pro-
posed method. Finally, we describe our network sync protocol
that extends the pair-wise clock parameter estimation scheme
to synchronize the whole sensor network.

A. Clock Parameter Estimation

Our technique has to overcome the challenge of propagation

delay caused by heterogeneous sensors and deployments. We
know that different sensors can recognize different aspects of
the same event, e.g., a microphone hears a door open, while an
optical sensor detects a change in light intensity from the same
door opening event. However, the sound signal propagates
to the nearby microphone as soon as the doorknob moves,
but the change in light is propagated after the door is half
open. Additionally, difference in signal propagation speeds
and the distance travelled by the two signals also adds to the
propagation delay to as high as 100 milliseconds.

Delay Adjusted Clock Sync. Unmitigated propagation
delays cause uncertainty in offset and drift estimation. While
large in magnitude, as in the example above, propagation delay
tP stays unchanged for the repeat occurrence of the same
event; because event delay depends on sensor types, event
locations, and signal propagation speeds, all of which stay
fixed across different instances of the same event. For example,
each time a door opens, the sound reaches a wall-mounted
audio sensor earlier3 than the audio sensor on a desk with the
same delay. Given this assumption, any change in tA − tB
for the repeat occurrence of an event reflects the change in
offset between two devices. With this in mind, as a device
pair observes a few events repeatedly, measurements tA − tB
will cluster around distinct values. Each cluster spans a small
range due to the offset component of these measurements.

We test our observations using an audio sensor pair (inter-
faced ESP32 at 2kHz sampling rate) deployed near a window.
These sensors are fed with an intermittent sound pulse from
an equidistant smartphone. In addition, the audio devices are
exposed to sounds originating from human activity inside
the room, adjacent corridor, and from outside the building.
Figure 4b shows the distribution of tA − tB measurements
clustered into bins spanning 5 timesteps each. As expected,
we see that most of these measurements cluster into distinct
groups (solid bars) where each has experienced the same
propagation delay. The larger number of events experience a
very small delay which corresponds to synthetic events from
the smartphone and activity inside the room. While larger
delays belong to the events occurring at a distance in the
corridor. We use these observations for drift estimation.

3sound travels faster through solids than air

Our delay adjusted clock sync scheme uses common event
timestamps obtained within a rolling window of 10 minutes.
We chose this window length as it allows the time difference
between the devices to grow bigger, making it easier to observe
this change through sensor timestamps. Next, it clusters the
measured offset values tA − tB into groups spanning a few
timesteps. We achieve this using a standard k-means clustering
algorithm where k is the number of offset groups. This
algorithm clusters the data into k groups such that their
means are as distinct as possible. For our experiments, we
chose k = 20 which allows clusters to span a small range,
putting events with the same tP into common groups. Next,
it drops the offset clusters with less than 3 measurements.
It, then, calculate drift for each of the remaining cluster as

drift = d(tA−tB)
dt = d(offset+tP)

dt ≈ d(offset)
dt assuming tP as

constant. The average of the drift values from all clusters is
our final drift value. Finally, it selects the mean of the offset
group with the smallest mean as the final offset value. This
offset may still contain propagation delay tP , however, com-
puting the offset using the smallest measurements minimizes
the error contributed by this delay.

Given the event detection and clock parameter estimation
techniques for sensor networks, we are now interested in
studying the sensing characteristics that provide the most
optimal clock performance. We perform a measurement study
on IoT devices equipped with a variety of sensors.

B. Measurement Study

Using commodity platforms with prevalent sensors, we
empirically study the effect of sensor sampling frequency
on timestamping, the ability of different kinds of sensors
to align their clocks, and characterize the impact of event
occurrence rate on synchronization error, thus giving us insight
into sensing capabilities that yield the best clock performance.
Our study estimates clock drift for sensing pairs using our
event detection and clock parameter estimation approach.

Testbed Setup. For our experiments, we use three embed-
ded platforms: CC2650 SensorTag STK [59] by TI, ESP32
Things [60] device from Sparkfun, and Flora [61] from
AdaFruit. STK has an onboard sensor suite, a separate mi-
crocontroller for applications and radio, and runs BLE stack
2.2.1. ESP32 Things device is interfaced with an external IMU,
an optical sensor, and a microphone. It is a dual core device,
with on-chip WiFi module and runs FreeRTOS based software
stack. Our third device, Flora, extends the peripherals of
ATmega32, an 8-bit microcontroller, interfaced with a micro-
phone. Flora is connected to the gateway device via USB. We
choose this set of devices to show that HAEST works across
a range of platforms with heterogeneous compute, network,
and hardware resources. ESP32 is the most resourceful of the
group with a multitasking software stack, while Flora being
an 8-bit micro-controller has the least resources.

We conduct experiments on three of the most prevalent
sensors in smart devices: Inertial Measurement Unit (IMU),
ambient light sensors (OPT), and microphones (AUD). We
use an Android smart phone to generate periodic (10-15

271

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a) IMU-IMU (b) OPT-OPT (c) AUD-AUD

Fig. 7: Relative drift estimation among different device pairs using same sensor type

sec) events for the sensors, i.e. vibration for IMU, light for
OPT, and sound events for microphone. We establish each
device pair’s ability to estimate relative clock drifts, which is
compared to the ground truth (GT) drift. To obtain GT offsets
and drift, we provide a pulse-per-second signal interrupting a
GPIO pin and timestamp on two devices under study.

Timestamping. Delay in timestamping is a function of
software stack operation, task scheduling, and stability of
timer generating interrupts that prompt sensor readings. ESP
operates at higher clock frequency and low clock drift; we
configure a hardware timer on ESP to generate periodic
interrupts to sample sensor data. STK uses a software timer
to obtain periodic sensor readings and timestamps using a
lower clock frequency. The software stack on STK has more
abstraction layers between sensing and timestamp generation
compared to ESP. Flora reads data in a software loop and the
sampling period is maintained using delay functions. Flora has
larger sampling delays as compared to timer interrupt based
sensor sampling in ESP and STK. Also, Flora operates at
8MHz, a much smaller clock frequency, and has an unstable
clock that drifts approximately at 50 ppm. In short, timestamps
are obtained at different layers of the stack for all devices, and
these stack delays contribute to the eventual clock accuracy.

Our first set of experiments use the same sensing types on
the same and different devices (Figure 7), while the rest use
different sensing types to estimate clock drift (Figure 8a).

1. Observations for Same Sensing Pairs. We collect data
from same kind of sensors (IMU-IMU, OPT-OPT, and AUD-
AUD) on five IoT device pairs (ESP-ESP, STK-STK, FLORA-
FLORA, STK-ESP, FLORA-ESP). The sensor sampling fre-
quency is varied from low to medium in the range of 5 Hz to
200 Hz. It is important to note that the source of all timing
errors are IoT devices, which observe events from a single
source located equidistant from device pairs.

Figure 7 shows the disparities in the relative drift estima-
tions between device pairs at different sampling frequencies.
For ESP, we observe drift estimates much closer to the GT
drift as compared to STK and Flora across all sensors. The
GT drift of Flora is large compared to the other two devices,
and the estimated drift is also farther from GT because of large
software stack delays affecting timestamping delays and hence
the drift estimates. We see in Figure 7 (c) that GT relative drift
of one Flora with another Flora device is 74.08ppm, while one

Flora to ESP is 20.86ppm. This means that the other Flora
drifts in opposite direction at approximately 50 ppm. Similarly,
in Figure 7 (a), we see that STK-ESP performs better than the
STK-STK drift estimations. On the basis of these observations,
we deduce that devices with better hardware and software
resources – ESP in this case – get better drift estimates.

In Figure 7(a), we see better drift estimation for a higher
sampling frequency because offsets are estimated with higher
resolution (time moves in small steps). At high frequency,
offset measurements have less error that translate into drift
estimates closer to GT drift. However, for Figure 7 (b), the
frequencies available for the STK device are 10 and 5 Hz. At
such low frequencies, resolution for offset measurements is in
100’s of msec causing huge in offset and drift. In essence,
higher sampling frequency yields better clock estimates.

2. Observations for Cross Sensing Pairs. To study the
effect of different sensor types on clock performance, we
perform experiments only on ESP device pair while using
all kinds of sensors i.e. IMU, OPT, and AUD, noting that
observations made for ESP will also extend to other devices.
Only one sensor is activated on each ESP for a given ex-
periment that resulted in three different pairs i.e. AUD-OPT,
AUD-IMU, and OPT-IMU. All sensor pairs are operating at the
same sampling frequency. For our controlled experiments, we
use smartphone applications that generate periodic vibration,
light, and sound events manually aligned with each other.
The manual alignment results in a small delay (orders of
100 millisecs) between two signals, e.g., light and vibrations,
which simulates propagation delays.

The drift estimates for different sensing pairs, that is, AUD-
OPT, AUD-IMU, and OPT-IMU are plotted in Figure 8a.
AUD-OPT pair provides the best drift estimate among all, and
the other two pairs with IMU have large errors because on
the ESP device, IMU communicates with the processor over
an I2C bus, whereas, both OPT and AUD sensors operate in
analog mode. The overhead in reading analog signals is less
than in a serial I2C read. Therefore, for both OPT and AUD
data, timestamps are more accurate than IMU, justifying better
drift estimates using the AUD-OPT pair. We deduce from this
experiment that some sensor types on a platform outperform

the others even if all operate at the same sampling frequency.

3. Event Rate Effect. Figure 8b shows an inverse rela-

tionship between event occurrence rate and clock error where

272

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a) Cross modality drift estimates (b) Clock error vs Event Rate

Fig. 8: (a) Relative drift for cross sensing pairs; (b) Clock error versus number of events

low event rate results in large error spread. These results are
obtained from an OPT-IMU sensing pair across ESP devices
at 250Hz. With more than 3 events per minute, we obtain
100µsec mean and 360µsec std, whereas for 1 event per two
minutes, the error increases to 2 msec mean and 3.5 msec
std. This relationship between event rate and clock error is
analogous to the relationship between packet exchange rate
and clock error in traditional synchronization protocols.

4. Sensing Pair Selection Mechanism. Often embedded
devices are equipped with more than one sensor, and each
sensor operates at a different sampling frequency. In this
case, the devices may choose to synchronize through one or
more sensing pairs. While they could synchronize using all
available sensing pairs, we are motivated by our study that drift
estimates are affected by sampling rate, event rate and sensing
type. And if one of the sensing pairs involved is providing
sub-optimal estimates, the overall synchronization error will
deteriorate despite good estimates provided by others.

We propose a sensing pair selection strategy for the devices
in a sensor network. Our observations suggest that 1) higher
sampling rates yield better timestamps and accurate clock
parameter estimates. Also, 2) high event rate provides greater
number of synchronization opportunities leading to improved
performance. Accordingly, we propose a simple strategy for
sync pair selection that works for heterogeneous devices: 1)
choose the pair with highest sampling rates for time-sync, and
if this leaves us with more than one sensor pairs, 2) choose
the pair which observes greater number of mutual events.

C. Network-wide Synchronization

Previous section established HAEST’s device pair synchro-
nization mechanism. In practice, sensing applications rely on a
multitude of devices rather than a single device pair. Consider
a typical smart space equipped with various sensing devices. A
person may perform many activities while moving throughout
this space. Each instance of human activity is observed by
a group of co-located sensing devices monitoring a particular
subspace. These devices collaborate to recognize the given ac-
tivity, and would benefit from a tight synchronization between
them [7]. While over an extended period, all sensors in the
network would coordinate to build a timeline of these activities
requiring rather coarse network-wide synchronization [62].

For such use cases, HAEST provides a graph-based proto-
col that leverages the network effect to synchronize all devices
through our pairwise synchronization method in Section V-B.
It aims to provide tight synchronization for co-located devices
and coarse network wide sync as indicated above.

(a) Fully Connected Clusters (b) Pruned Clusters

Fig. 9: Network synchronization through pair-wise clock alignment within clusters and
across clusters

Synchronization Clusters. We frame our network synchro-
nization task into a graph clustering problem. Each device
is a node in this graph, while edges represent the common
event count between nodes captured during the bootstrapping
phase. Each node is connected to every other node, if they
detect at least one common event. Figure 9a shows an example
graph for a sensor network with two clusters. The device
nodes are labeled from A to H, while the edge weights
V1 to V10 represent the nonzero event count between the
devices. This event count depends on number and kind of
sensors on each device. Once we form a graph using common
event information, we use the Markov clustering algorithm to
determine the clusters within the graph. One can also use other
standard clustering algorithms to achieve the same end result.

Intra-cluster Alignment. Once we group the devices into
clusters, the nodes in a cluster (Figure 9a) are connected to
multiple other nodes. We can synchronize each node with all
other nodes. It will yield m∗ (m−1)/2 synchronization pairs
for a cluster with m nodes. However, this naive approach
results in multiple clock alignments for the same pairs caus-
ing inconsistencies and wastes resources. To achieve better
performance and avoid prohibitive costs, we synchronize each
device with only one other device. We use optimal sensing
pair selection from Section V-B-4 to prune excess graph
edges. Only those edges used for pair-wise synchronization
(Figure 9b) remain. This approach aligns with our objective
of minimizing the error between co-located devices while
maintaining network-wide sync using the network effect.

Network Effect [63] is a phenomenon in a group of devices
where pairwise alignment leads to whole group alignment via
transitive synchronization. This effect has been leveraged in
data centers as well [64]. For example, the subgraph GB in
Figure 9b has two synchronization pairs, i.e., (E,F) and (F,H).
If device E clock is aligned with F and F is aligned with H,
we say that E is transitively synchronized with H through F.

Inter-cluster Alignment. With clocks in each cluster
aligned, the final step achieves time-sync across the clusters.
To do so, we choose device pairs from the two clusters that can
observe common events and select the pair with the highest
common event count. We call these devices ‘bridge devices’
as they bridge the error gap between different clusters.

VI. EVALUATION

We first compare HAEST performance with NTP, the only
other protocol that universally synchronizes heterogeneous
devices. We, then, evaluate the effectiveness of HAEST in
predicting clock errors using a variety of case studies: one
with fixed deployment in a smart home with activity-related

273

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a) HAEST comparison with NTP over USB (b) HAEST comparison with NTP over BLE

Fig. 10: HAEST & NTP comparison over different communication channels. Unlike
NTP, HAEST performance is agnostic to networking technologies

events, the other case study is on a wireless body area network
(WBAN); a mobile deployment exposed to movement-related
events. Final study concentrates on the performance of a
hybrid of static smart space and mobile WBAN deployment.

A. Clock Synchronization Performance

Comparison with NTP. Network Time Protocol (NTP) is
the most widely used and universal synchronization protocol.
To compare it with HAEST, we interface two ESP and one
Flora with a Raspberry Pi4 (the gateway). NTP is enabled on
Pi via internet. The ESP and Flora communicate with Pi over
USB or a BLE connection, and synchronize their local clocks
to Pi following SNTP principles. This setup corresponds to real
world edge deployments: most devices do not have internet
access, instead they communicate with an NTP-synchronized
central device over wired or wireless medium.

HAEST synchronizes two ESPs using IMU-IMU pair at
200Hz, and the ESP-FLORA pair via AUD-AUD at 100Hz.
Figure 10a shows clock errors median and spread for both
HAEST and NTP. We can see that HAEST achieves more
than 5x better performance than NTP. We also compare
HAEST with NTP over BLE in Figure 10b. It is evident
that NTP over BLE further degrades clock quality for IoT
devices while HAEST thrives irrespective of the communica-
tion medium between the IoT device and the gateway.

HAEST’s computations are offloaded to the gateway with
no timing cost at the IoT devices while NTP puts both
computational and network overhead on the IoT device and
increases power consumption to 36% compared to our setup.
The power numbers in Table IV correspond to a NTP setup
where one timestmap session lasts 1 sec after every 15 sec.
One can reduce the frequency of NTP sessions but it will
degrade its performance further. The computational cost at the
gateway is addressed later in this section.

To summarize, HAEST’s synchronization quality across
a network of heterogeneous devices is better than or com-
parable to the NTP (the state-of-the-art) for heterogeneous
networks. For perspective, Matter, a recent set of standardized
specifications for IoT devices, refers to NTP and GPS for
synchronization in its documentation [16]. HAEST achieves
better accuracy than the former and incurs much lower costs
than the later. Further, in contrast to GPS it also works
indoors. Setting aside heterogeneity, it may not outperform
the best (e.g. C-Sync [24], TPSN [65] etc.) but it still offers
an advantage to battery powered sensors by extending their
lifetime by saving power that would otherwise be spent on

Device Sync Protocol Average Power Consumption (mW)

ESP32 Things HAEST 42.08
ESP32 Things NTP 57.19

Tab. IV: Power Consumption of HAEST vs NTP over BLE

Fig. 11: Floor plan shows devices 1, 2, 3, 4 (explained in Table V) deployment and event
sources A, B, C, D, E, F (explained in Table VI) in a smart home

time synchronization (e.g., while using HAEST ESP32 Things
spend 36% less power than NTP as discussed above).

Case Study 1: Smart Home. We implement HAEST
design for a smart home and deployed devices as shown in
Figure 11. It consists of a bedroom and a living room (also
a make-shift office) adjacent to each other. Eight devices of
three different kinds (ESP, STK, Flora) carrying three types of
sensors (IMU, AUD, OPT) are deployed. Details of device and
sensor types are in Table V, and Table VI compiles a few of
the most common ambient events generated by humans, pets,
and machine activity. Most of these events e.g., opening the
door and windows produce signatures detected by all sensors.

Our smart home setup in Figure 11 forms two device
clusters connected to each other via bridge devices deployed at
the adjacent doors. We analyze the performance of every pair
in a cluster and also between the two clusters, and compare
clock errors via single and multiple intermediary nodes.

Figure 12 and 13 show the distribution, absolute mean and
standard deviation of clock errors for intra- and inter-cluster
devices respectively in our floor plan. For inter-cluster, we
analyze the errors among those device-pairs that do not belong
to the same cluster. These device-pairs are synchronized
with each other via multiple intermediary devices including
bridge devices. We can clearly see that error means and
spread are better for intra-cluster as compared to inter-cluster
pairs. Except in the case of Flora-ESP, where intra-cluster
performance is comparable with inter-cluster device pairs

Device
ID

Device
Platform

Sensing
Modalities

Sampling Fre-
quency (Hz)

1 ESP32 Things AUD / IMU 8000 / 200
2 ESP32 Things IMU / OPT 200 / 50
3 Sensortag CC2650 IMU / OPT 200 / 50
4 AdaFruit Flora AUD 100

Tab. V: Device Configuration Table
Event
ID

Event Source Potential Events Sensing Type

A Humans,
Pets

Footsteps,
Physical Interactions

AUD,
IMU

B Windows Window Open/Close
Window Shades On/Off

AUD,
IMU, OPT

C Doors Door Open/Close AUD, IMU, OPT
D LED Screen Light Intensity Changes OPT
E Refrigerator Door Open/Close AUD, IMU, OPT
F Coffee

Machine
Sound Level Changes
Surface Vibrations

AUD,
IMU, OPT

Tab. VI: Common Ambient Events available to HAEST

274

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

(a) Clock error distribution (b) Error Mean and Spread

Fig. 12: Intra-cluster clock errors in smart home study

(a) Clock error distribution

l
(b) Error Mean and Spread

Fig. 13: Inter-cluster clock errors in smart home study

involving FLORA. This is due to Flora’s inability to perform
accurate drift estimates, as we observed in Figure 7c. Better
intra-cluster performance validates the use of our clustering
approach to synchronize sensor networks.

Intuitively, large inter-cluster error is due to accumulation of
error via multiple intermediary devices. Figure 14a validates
our intuition that devices connected directly are more tightly
synchronized with each other than the devices connected over
one or more hops. This result is in line with traditional multi-
hop synchronization protocols where errors always accumulate
over more number of hops. It is to be noted that error
accumulation in HAEST is due to network effect.

Case Study 2: Wireless Body Area Network (WBAN).
We also evaluate HAEST’s performance under demanding
conditions of a Wireless Body Area Network (WBAN) in
Figure 15a. The network consists of 2 ESP on the person’s
right arm and a pair of STK devices on the right leg. Each

(a) Smart home case (b) WBAN case

Fig. 14: Effect of intermediary devices on clock error in (a) smart home and (b) WBAN
deployment

(a) WBAN deployment (b) Pair-wise clock error between WBAN and
smart home device

Fig. 15: (a) WBAN study; (b) distribution of pair-wise clock errors between static and
a mobile device

(a) Clock error distribution (b) Error Mean and Spread

Fig. 16: HAEST performance in WBAN study

device is interfaced with an IMU operating at 200Hz. The
network is structured as a single cluster. Sensing devices
monitor person’s indoor activities such as walk, exercise and
desk work. Ambient events from these activities, especially
physical motion in the form of walk and exercise, provide
many synchronization opportunities to the devices. It is im-
portant to distinguish this network from smart home where
all sensing devices are stationary, whereas WBAN devices
are moving along-with body parts and their relative distance
changes due to limb movements. In addition, the devices
are exposed to a lot of background noise induced by slow,
asynchronous or asymmetric body movements.

Most of the actions generating ambient events are from
coordinated movements of various body parts, but even the
highly coordinated movements are not ideally synchronized.
This leads to larger variations in propagation delays observed
by the devices in WBAN. These variations in propagation
delays mean that errors between devices (i.e. ESP-ESP, STK-
STK, ESP-STK) have higher magnitude as compared to smart
home case. Under these challenging and noisy conditions, we
are able to achieve a decent clock accuracy over multiple hops
in WBAN as shown in Figure 14b. In addition, Figure 16
demonstrates that HAEST overcomes effects of environmental
noise on clock errors in heterogeneous mobile deployments.

Case Study 3: Joint WBAN and Smart Home. Figure 15b
shows the error between an IMU sensor installed on a person’s
leg as part of WBAN and a smart home sensing device
with microphone at 200Hz. The two devices mutually observe
events originating from a person’s activity. In this case, person
is walking around, interacting with various objects and doing
desk work. This puts the two devices in relative motion. Events
such as walking and moving objects occur in proximity of
the microphone are mutually observed by the two devices.
HAEST leverages these events between a mobile and a
stationary device to achieve an error of several millisec. This
experiment demonstrates that HAEST is robust to changing
network deployments and device mobility.

B. Robustness & Overhead

Availability of Ambient Events. HAEST relies on ambient
events for synchronization, which raises concerns regarding
the events’ availability. We argue that enough events are
available in most smart spaces, as demonstrated by our case
studies. Previous studies also show that sensing applications
experience frequent ambient events. For example, PEEVS [66]
and Fridman et al. [6] show that sensors in a smart office and
autonomous cars experience frequent common events.

275

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

Deployment density. For devices to observe and timestamp
mutual events, they should be located in proximity governed
by the event and sensor type. This assumption is inline with
existing (e.g. activity recognition [20]) and emerging (e.g.
LiDAR-Camera perception [67]) distributed sensing appli-
cations which improve performance by relying on multiple
sensors observing the same events. The deployment density
in these sensor networks, by design, ensures they observe
common ambient events and hence they are well suited to
benefit from HAEST time-sync.

Overhead. By design, HAEST leverages the gateway’s re-
sources to synchronize time between IoT devices. As discussed
in section III, devices only stream timestamped data to the
gateway moving additional computational, communication or
energy costs away from the IoT devices and to the gateway.
From an IoT device’s perspective, it can achieve time-sync
without expending precious device resources. The biggest
beneficiary of this would be battery powered devices which
could see a significant increase in their battery lifetime when
using HAEST as compared to traditional time-sync protocols.
However, from the gateway’s (RPi4) perspective, HAEST is
somewhat expensive as it consumes approximately 50% of its
compute resources. Most of this computational cost is from
event detection, the building block of applications like human
activity recognition, elderly fall detection, etc. And we can
offset some of the HAEST’s computational cost by sharing
event detection with such applications albeit with a caveat
i.e. our event detection approach has high false positive rates.
While some upstream applications may not use it “out-of-the-
box”, their task would still be cut, as they do not need to
process a continuous stream of sensor data but only the event
candidates (to weed out false positives).

We also note that there are few upfront costs for setting up
HAEST with new types of sensors, and use cases (determining
event detection window N, drift window 10 min and k=20).
However, these costs are akin to engineering efforts involved
in any product development and should diminish for repeat
deployments as there are finite types of sensors and use cases.

VII. CONCLUSION

We introduce sensing based time-sync approach for het-
erogeneous platforms called HAEST that relies on ambient
events to align clocks without explicit exchange of time
information, thus HAEST is not affected by communication
delay uncertainty and moves overheads from the IoT devices
to the gateway. Our smart home and WBAN evaluations show
applicability of our design to a variety of platforms and
deployments.

Extensibility. HAEST is a universal time synchronization
approach for ubiquitous IoT devices. Though our evaluations
are based on a variety of platforms with three most prevalent
sensors, our approach is not dependent on any sensor type,
rather sensors such as WiFi RSSI, power meters, and thermal
cameras can be integrated into our system.

ACKNOWLEDGEMENTS

We thank the anonymous RTAS reviewers for their insight-
ful comments and feedback. This research is supported by NSF
grants 2237485 and 2230143.

REFERENCES

[1] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[2] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “Ieee 1588-standard for
a precision clock synchronization protocol for networked measurement
and control systems,” in Conference on IEEE, vol. 1588, 2005, p. 2.

[3] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time syn-
chronization protocol,” in SenSys, Proceedings of the 2nd international
conference on Embedded networked sensor systems, 2004.

[4] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, p. 147–163, Dec. 2003. [Online]. Available:
https://doi.org/10.1145/844128.844143

[5] M. T. Nyamukuru and K. M. Odame, “Tiny eats: Eating detection on a
microcontroller,” in 2020 IEEE Second Workshop on Machine Learning
on Edge in Sensor Systems (SenSys-ML), 2020, pp. 19–23.

[6] L. Fridman, D. Brown, W. Angell, I. Abdić, B. Reimer, and H. Noh,
“Automated synchronization of driving data using vibration and steering
events,” Pattern Recognition Letters, vol. 75, 10 2015.

[7] S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava, “Time awareness
in deep learning-based multimodal fusion across smartphone platforms,”
in 2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE, 2020, pp. 149–156.

[8] F. Mokaya, R. Lucas, H. Noh, and P. Zhang, “Burnout: A wearable
system for unobtrusive skeletal muscle fatigue estimation,” 04 2016, pp.
1–12.

[9] M. Meyer, T. Farei-Campagna, A. Pasztor, R. D. Forno, T. Gsell,
J. Faillettaz, A. Vieli, S. Weber, J. Beutel, and L. Thiele, “Event-
triggered natural hazard monitoring with convolutional neural networks
on the edge,” ser. IPSN ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 73–84. [Online]. Available:
https://doi.org/10.1145/3302506.3310390

[10] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” IEEE network, vol. 18, no. 4, pp. 45–50, 2004.

[11] ——, “Time synchronization in sensor networks: a survey,” IEEE
Network, vol. 18, no. 4, pp. 45–50, 2004.

[12] S. Karthik and A. A. Kumar, “Challenges of wireless sensor networks
and issues associated with time synchronization,” in Proceedings of
the UGC sponsored national conference on advanced networking and
applications, 2015, pp. 19–23.

[13] C. A. Chin, G. V. Crosby, T. Ghosh, and R. Murimi, “Advances and
challenges of wireless body area networks for healthcare applications,”
in 2012 International Conference on Computing, Networking and Com-
munications (ICNC), 2012, pp. 99–103.

[14] R. Nabiei, M. Najafian, M. Parekh, P. Jančovič, and M. Russell, “Delay
reduction in real-time recognition of human activity for stroke rehabil-
itation,” in 2016 First International Workshop on Sensing, Processing
and Learning for Intelligent Machines (SPLINE), 2016, pp. 1–5.

[15] M. Sichitiu and C. Veerarittiphan, “Simple, accurate time synchroniza-
tion for wireless sensor networks,” in 2003 IEEE Wireless Communica-
tions and Networking, 2003. WCNC 2003., vol. 2, 2003, pp. 1266–1273
vol.2.

[16] (2023) Matter 1.0 core specification. [Online]. Available: https:
//csa-iot.org/all-solutions/matter/

[17] M. C. Dinescu, J. Mazza, A. Kujanski, B. Gaza,
and M. Sagan, “U.S. Patent No. 61/276,266,” 2010,
https://patents.google.com/patent/US9002044.

[18] C. Chen, S. Rosa, C. X. Lu, N. Trigoni, and A. Markham, “Selectfusion:
A generic framework to selectively learn multisensory fusion,” arXiv
preprint arXiv:1912.13077, 2019.

[19] J. Clemente, F. Li, M. Valero, and W. Song, “Smart seismic sensing
for indoor fall detection, location, and notification,” IEEE Journal of
Biomedical and Health Informatics, vol. 24, no. 2, pp. 524–532, 2020.

[20] S. Sandha, J. Noor, F. Anwar, and M. Srivastava, “Time awareness in
deep learning-based multimodal fusion across smartphone platforms,”
04 2020, pp. 1–8.

276

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

[21] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, M. Welsh,
and P. Bonato, “Analysis of feature space for monitoring persons with
parkinson’s disease with application to a wireless wearable sensor sys-
tem,” Conference proceedings: Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE Engineering
in Medicine and Biology Society. Conference, vol. 2007, pp. 6291–4, 02
2007.

[22] K. Lorincz, B.-r. Chen, G. Challen, A. Roy Chowdhury, S. Patel,
P. Bonato, and M. Welsh, “Mercury: A wearable sensor network platform
for high-fidelity motion analysis,” 01 2009, pp. 183–196.

[23] Z. Yu, C. Jiang, Y. He, X. Zheng, and X. Guo, “Crocs: Cross-technology
clock synchronization for wifi and zigbee,” ser. EWSN ’18. USA:
Junction Publishing, 2018, p. 135–144.

[24] N. Shivaraman, P. Schuster, S. Ramanathan, A. Easwaran, and S. Stein-
horst, “Cluster-based network time synchronization for resilience with
energy efficiency,” in 2021 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2021, pp. 149–161.

[25] A. Rowe, V. Gupta, and R. Rajkumar, “Low-power clock synchroniza-
tion using electromagnetic energy radiating from ac power lines,” 01
2009, pp. 211–224.

[26] Y. Li, R. Tan, and D. K. Yau, “Natural timestamping using powerline
electromagnetic radiation,” in 2017 16th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN). IEEE,
2017, pp. 55–66.

[27] Z. Yan, Y. Li, R. Tan, and J. Huang, “Application-layer clock syn-
chronization for wearables using skin electric potentials induced by
powerline radiation,” 09 2017.

[28] J. V. Jeyakumar, L. Lai, N. Suda, and M. Srivastava, “Sensehar:
A robust virtual activity sensor for smartphones and wearables,”
in Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, ser. SenSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 15–28. [Online]. Available:
https://doi.org/10.1145/3356250.3360032

[29] K. J. Oh and K. jae Kim, “Analyzing stock market tick data
using piecewise nonlinear model,” Expert Systems with Applications,
vol. 22, no. 3, pp. 249–255, 2002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0957417401000586

[30] A. Hasan, W. Ning, and A. K. Gupta, “An information-based
approach to the change-point problem of the noncentral skew
t distribution with applications to stock market data,” Sequential
Analysis, vol. 33, no. 4, pp. 458–474, 2014. [Online]. Available:
https://doi.org/10.1080/07474946.2014.961842

[31] J. Reeves, J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, “A
review and comparison of changepoint detection techniques for
climate data,” Journal of Applied Meteorology and Climatology,
vol. 46, no. 6, pp. 900 – 915, 2007. [Online]. Available:
https://journals.ametsoc.org/view/journals/apme/46/6/jam2493.1.xml

[32] K. Yamanishi and J.-i. Takeuchi, “A unifying framework for detecting
outliers and change points from non-stationary time series data,” in
Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 676–681.
[Online]. Available: https://doi.org/10.1145/775047.775148

[33] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory
and application. prentice Hall Englewood Cliffs, 1993, vol. 104.

[34] R. Zhang, Y. Hao, D. Yu, W.-C. Chang, G. Lai, and Y. Yang,
“Correlation-aware unsupervised change-point detection via graph neu-
ral networks,” 2020.

[35] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long- and short-
term temporal patterns with deep neural networks,” 2018.

[36] T. Chowdhury, M. Aldeer, S. Laghate, and J. Ortiz, “Cadence: A
practical time-series partitioning algorithm for unlabeled iot sensor
streams,” arXiv preprint arXiv:2112.03360, 2021.

[37] J. Oostvogels, S. Michiels, and D. Hughes, “One-take: Gathering dis-
tributed sensor data through dominant symbols for fast classification,”
in 2022 21st ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), 2022, pp. 337–349.

[38] L. Klingbeil and T. Wark, “A wireless sensor network for real-time
indoor localisation and motion monitoring,” in 2008 International Con-
ference on Information Processing in Sensor Networks (ipsn 2008),
2008, pp. 39–50.

[39] F. Gustafsson, “The marginalized likelihood ratio test for detecting
abrupt changes,” IEEE Transactions on Automatic Control, vol. 41, no. 1,
pp. 66–78, 1996.

[40] M. Sugiyama, S. Nakajima, H. Kashima, P. Buenau, and M. Kawanabe,
“Direct importance estimation with model selection and its application
to covariate shift adaptation,” Advances in neural information processing
systems, vol. 20, 2007.

[41] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning for
differing training and test distributions,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 81–88.

[42] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and
B. Schölkopf, “Covariate shift by kernel mean matching,” Dataset shift
in machine learning, vol. 3, no. 4, p. 5, 2009.

[43] M. Sugiyama, T. Suzuki, and T. Kanamori, Density ratio estimation in
machine learning. Cambridge University Press, 2012.

[44] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, “Time series segmentation
through automatic feature learning,” arXiv preprint arXiv:1801.05394,
2018.

[45] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb, K. Fu,
W. P. Burleson, and J. Sorber, “Persistent clocks for batteryless sensing
devices,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 4, pp. 1–28, 2016.

[46] S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava, “Exploiting
smartphone peripherals for precise time synchronization,” in 2019 IEEE
International Symposium on Precision Clock Synchronization for Mea-
surement, Control, and Communication (ISPCS). IEEE, 2019, pp. 1–6.

[47] C. G. Ramirez, A. Sergeyev, A. Dyussenova, and B. Iannucci, “Long-
shot: long-range synchronization of time,” in Proceedings of the 18th
International Conference on Information Processing in Sensor Networks,
2019, pp. 289–300.

[48] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat, “Exploiting a natural network effect for scalable, fine-grained
clock synchronization,” in 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), 2018, pp. 81–94.

[49] X. Guo, X. Zheng, and Y. He, “Wizig: Cross-technology energy com-
munication over a noisy channel,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[50] X. Guo, Y. He, X. Zheng, L. Yu, and O. Gnawali, “Zigfi: Harness-
ing channel state information for cross-technology communication,”
IEEE/ACM Transactions on Networking, vol. 28, no. 1, pp. 301–311,
2020.

[51] M. Buevich, N. Rajagopal, and A. Rowe, “Hardware assisted clock
synchronization for real-time sensor networks,” in 2013 IEEE 34th Real-
Time Systems Symposium. IEEE, 2013, pp. 268–277.

[52] S. Viswanathan, R. Tan, and D. K. Yau, “Exploiting power grid for
accurate and secure clock synchronization in industrial iot,” in 2016
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 146–
156.

[53] Z. Li, W. Chen, X.-Y. Li, and Y. Liu, “Flight: clock calibration using
fluorescent lighting,” 08 2012.

[54] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[55] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz et al., “A pub-
lic domain dataset for human activity recognition using smartphones.”
in Esann, vol. 3, 2013, p. 3.

[56] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen,
and M. D. Plumbley, “Detection and classification of acoustic scenes and
events: Outcome of the dcase 2016 challenge,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 26, no. 2, pp. 379–
393, 2018.

[57] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[58] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[59] (2020) Ti cc2650stk. [Online]. Available: https://www.ti.com/tool/
CC2650STK

[60] (2020) Sparkfun esp32 things. [Online]. Available: https://www.
sparkfun.com/products/13907

[61] (2020) Adafruit flora. [Online]. Available: https://www.adafruit.com/
product/659

[62] S. Rinaldi, D. Della Giustina, P. Ferrari, A. Flammini, and
E. Sisinni, “Time synchronization over heterogeneous network for
smart grid application: Design and characterization of a real case,”
Ad Hoc Networks, vol. 50, pp. 41–57, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S157087051630097X

277

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

[63] R. Solis, V. S. Borkar, and P. R. Kumar, “A new distributed time syn-
chronization protocol for multihop wireless networks,” in Proceedings
of the 45th IEEE Conference on Decision and Control. IEEE, 2006,
pp. 2734–2739.

[64] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat, “Exploiting a natural network effect for scalable,
fine-grained clock synchronization,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 81–94. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/geng

[65] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, ser. SenSys ’03. New York,
NY, USA: Association for Computing Machinery, 2003, p. 138–149.
[Online]. Available: https://doi.org/10.1145/958491.958508

[66] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event
verification in smart homes,” 11 2019, pp. 1455–1467.

[67] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic,
“Security analysis of Camera-LiDAR fusion against Black-Box attacks
on autonomous vehicles,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 1903–1920. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/hallyburton

278

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

APPENDIX

The auto-encoder, as the name suggests learns its own
encodings. The encoder takes in the input data and maps it
to a latent vector and the decoder takes this latent vector and
regenerates the input data. So, auto-encoders are trained in an
unsupervised manner as they use the same data as their input
and output.

For our base auto-encoder implementation, both the encoder
and decoder consist of two hidden layers. LeakyReLU is
the activation function for all layers except the last layer,
which uses tanh instead. For the encoder, the input layer is
the size of the sensor data window chosen for the training.
The intermediate layer is half the size of the input layer
while the last layer is one-tenth the size of the input. The
decoder’s intermediate layer is the same size as the encoder’s
intermediate layer. The decoder’s input layer has a size equal
to the encoder’s output and the output layer’s size is the same
as the encoder’s input. We use Adam optimizer with a learning
rate of 10−5 to train the auto-encoder for 200 epochs.

To train the sensor-specific layer, we use a base auto-
encoder trained on combined IMU and audio datasets. We
freeze the base encoder and add an extra layer at the output
with a size equal to half the base encoder’s input. This is our
sensor-specific layer. Similarly, we freeze the base decoder
but this time we add the extra layer before the base decoder’s
input. Then this new auto-encoder is trained using the same
settings that were used to train the base auto-encoder. Since
the base encoder and decoders are frozen, the sensor-specific
layer learns to predict sensor data encodings from the base
encoder’s output features. For HAEST to be lightweight, the
sensor-specific layer should have a small size. To put our
sensor layer’s size in perspective, we compare its size to
the base encoder’s size. If our base encoder’s input size is
2400, the intermediate layer size would be 1200. The first
layer will have 2400x1200 = 2880000 parameters to learn.
The base encoder’s last layer’s size would be 240, which
translates into 1200x240 = 288000 parameters. The sensor-
specific layer’s size, in this case, would be 1200 making its
learnable parameters the same as that of the base encoder’s
last layer. The sensor-specific layer’s weights are only 9.1%
of the base encoder’s weights.

We evaluate our event detection approach using two public
datasets; i) DCASE 2016 [56] synthetic audio event detection
data and ii) UCI Human activity recognition data-set [55],
which consists of 3-axial accelerometer and gyroscope mea-
surements for participants performing different activities. An
input size of 2400 timesteps for Dcase2016 and 400-time steps
of the UCI dataset is used in training and inputs are normalized
between (−1, 1). Finally, we train auto-seconders on a server
(Core i7-9700K+2080Ti) device equipped with GPU.

To measure the performance of our approach, we use the
area under the receiver operating curve (ROC) as the metric.
ROC is obtained by plotting the true positive rate (TPR) and
false positive rate (FPR) which are calculated as TPR =
nCP
nGT and FPR = nALL−nCP

nALL−nCP+TN respectively. Here, nCT

and nALL are the correct and total number of events predicted
by our algorithm, respectively. nGT is the total number of
events in the dataset, while TN are the true negatives. TN is
determined by time-series length divided by Nw. A prediction
is determined to be correct if the time difference between the
predicted event and the ground truth event is less than τ . ROC
curve is obtained by varying the values of τ .

279

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 10,2024 at 14:52:19 UTC from IEEE Xplore. Restrictions apply.

Adeel Nasrullah

